
Glossary
Cross-Entropy

Marcel Turcotte

2024-10-24

Cross-entropy measures the difference between a predicted probability distribution and the
true distribution, typically represented by one-hot encoded labels. It quantifies the penalty or
error in prediction, commonly used as a loss function in classification tasks, with lower values
indicating better model performance.

The equation for cross-entropy 𝐻(𝑝, 𝑞) is:

𝐻(𝑝, 𝑞) = − ∑
𝑘

𝑝𝑘 log(𝑞𝑘)

where:

• 𝑝𝑘 is the true probability distribution (typically one-hot encoded labels),
• 𝑞𝑘 is the predicted probability distribution,
• the sum runs over all classes 𝑘.

In binary classification, this simplifies to:

𝐻(𝑦, ̂𝑦) = −[𝑦 log(̂𝑦) + (1 − 𝑦) log(1 − ̂𝑦)]

where:

• 𝑦 is the true label (either 0 or 1),
• ̂𝑦 is the predicted probability of the positive class.

When 𝑦, the true label, is one-hot encoded for multiclass classification, it represents the class
as a vector where the element corresponding to the correct class is 1, and all other elements
are 0. This encoding allows the cross-entropy loss to focus only on the predicted probability
for the true class, penalizing the model based on how far the predicted probability deviates
from 1 for the correct class.

1

In neural networks, the values of ̂𝑦𝑘 are generally obtained by applying the softmax function
to the outputs of the final layer.

The Python program below demonstrates how cross-entropy loss for one example varies with
changes in the predicted probability, represented as − log(̂𝑦𝑘), as it deviates from 1 for the true
class label (𝑦𝑘). When ̂𝑦𝑘 approaches 1, the loss for a single example approaches 0, indicating
no penalty. Conversely, as ̂𝑦𝑘 approaches 0, the loss tends toward positive infinity, imposing
a substantial penalty for assigning a low probability to the correct class. This logarithmic
relationship ensures that the loss function heavily penalizes incorrect predictions, particularly
when the predicted probability for the correct class is near zero.

import numpy as np
import matplotlib.pyplot as plt

Generate an array of p values from just above 0 to 1
p_values = np.linspace(0.001, 1, 1000)

Compute the natural logarithm of each p value
ln_p_values = - np.log(p_values)

Plot the graph
plt.plot(p_values, ln_p_values, label=r'$-\log(\hat{y}_k)$', color='b')

Add labels and title
plt.xlabel(r'\hat{y}_k')
plt.ylabel(r'loss')
plt.title(r'Graph of $-\log(\hat{y}_k)$ for \hat{y}_k from 0 to 1')
plt.grid(True)
plt.axhline(0, color='black', lw=0.5) # Add horizontal line at y=0
plt.axvline(0, color='black', lw=0.5) # Add vertical line at x=0

Display the plot
plt.legend()
plt.show()

2

0.0 0.2 0.4 0.6 0.8 1.0
yk

0

1

2

3

4

5

6

7

lo
ss

Graph of log(yk) for yk from 0 to 1
log(yk)

Consider a multiclass classification problem with three classes (𝐶1, 𝐶2, 𝐶3). Suppose the true
class of the given example is 𝐶2, and the model outputs the following predicted probabilities:

̂𝑦 = [0.2, 0.7, 0.1]

The one-hot encoded true label 𝑦 for 𝐶2 is:

𝑦 = [0, 1, 0]

Using the cross-entropy formula:

𝐻(𝑦, ̂𝑦) = − ∑
𝑘

𝑦𝑘 log(̂𝑦𝑘)

Substituting the values:

𝐻(𝑦, ̂𝑦) = −[0 ⋅ log(0.2) + 1 ⋅ log(0.7) + 0 ⋅ log(0.1)]

Since only the term corresponding to the true class (second class) is non-zero, the calculation
simplifies to:

3

𝐻(𝑦, ̂𝑦) = − log(0.7)

Calculating this:

𝐻(𝑦, ̂𝑦) ≈ −(−0.357) = 0.357

Thus, the cross-entropy loss for this example is approximately 0.357, indicating the penalty
for the model’s deviation from the correct class probability.

When calculating the average cross-entropy loss over a dataset with multiple examples, the
loss function is summed over all examples and then divided by the number of examples to
obtain the average loss. The equation for the average cross-entropy loss is:

𝐿 = − 1
𝑁

𝑁
∑
𝑖=1

𝐾
∑
𝑘=1

𝑦𝑖,𝑘 log(̂𝑦𝑖,𝑘)

where:

• 𝑁 is the total number of examples in the dataset,
• 𝐾 is the number of classes,
• 𝑦𝑖,𝑘 is the true binary indicator (0 or 1) for whether the 𝑖-th example belongs to class 𝑘,
• ̂𝑦𝑖,𝑘 is the predicted probability that the 𝑖-th example belongs to class 𝑘.

This formulation calculates the average loss across all examples, providing a single scalar value
that represents the model’s performance over the entire dataset.

4

