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This example is derived from my personal notes. Jupyter notebooks can be effectively used
for writing interactive notes and exploring ideas.

Central Limit Theorem

The Central Limit Theorem is a fundamental statistical concept that states that the distribu-
tion of sample means approximates a normal distribution (bell-shaped curve) as the sample
size becomes large, regardless of the shape of the population distribution, provided that the
samples are independent and identically distributed.

sample standard deviation = population standard deviation√
sample size

Let’s illustrate the concept with two popular but dissimilar probability distributions.

To refresh our memory, we will generate 1000 values from a uniform distribution with range 0
to 1, and plot the result.

import numpy as np
import matplotlib.pyplot as plt

# Sample size
sample_size = 1000

# Generate values
values = np.random.uniform(0, 1, sample_size)

# Plot the histogram
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plt.hist(values, bins=20, edgecolor='black')
plt.title(f'Sampling {sample_size} values from a Uniform Distribution')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.show()
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Sampling 1000 values from a Uniform Distribution

In this first example, 1000 samples are generated each with 31 values sampled from a uniform
distribution with range [0, 1]

import numpy as np
import matplotlib.pyplot as plt

# Number of samples and sample size
num_samples = 1000
sample_size = 31

# Generate samples and calculate their means
sample_means = [np.mean(np.random.uniform(0, 1, sample_size)) for _ in range(num_samples)]

# Plot the histogram of the sample means
plt.hist(sample_means, bins=20, edgecolor='black')
plt.title('Histogram of Sample Means (Uniform Distribution)')
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plt.xlabel('Sample Mean')
plt.ylabel('Frequency')
plt.show()
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Histogram of Sample Means (Uniform Distribution)

The above histogram has the characteristic bell shape.

For the next example, we will turn our attention to the exponential probability distribution.
Again, we will refresh our memory. The following shows the histogram for 1000 values gener-
ated from an exponential distribution with rate 𝜆 = 1

4 . Hence, the scale, 𝛽 = 1
𝜆 , is 4.

import numpy as np
import matplotlib.pyplot as plt

# Sample size
sample_size = 1000

# Generate values
values = np.random.exponential(scale=4, size=sample_size)

# Plot the histogram
plt.hist(values, bins=20, edgecolor='black')
plt.title(f'Sampling {sample_size} values from an Exponential Distribution')
plt.xlabel('Value')
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plt.ylabel('Frequency')
plt.show()
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Sampling 1000 values from an Exponential Distribution

Now, let’s generate 1000 samples, each with 31 values sampled from an exponential distribu-
tion.

import numpy as np
import matplotlib.pyplot as plt

# Number of samples and sample size
num_samples = 1000
sample_size = 31

# Scale parameter for the exponential distribution
scale_parameter = 4

# Generate the samples and calculate their means
sample_means = [np.mean(np.random.exponential(scale=scale_parameter, size=sample_size)) for _ in range(num_samples)]

# Plot the histogram of the sample means
plt.hist(sample_means, bins=30, edgecolor='black')
plt.title('Histogram of Sample Means (Exponential Distribution)')
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plt.xlabel('Sample Mean')
plt.ylabel('Frequency')
plt.show()
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Histogram of Sample Means (Exponential Distribution)

Why does this matter? In experimental work, we frequently lack knowledge of the underlying
distribution of the data. Yet, when we summarize experimental results using the mean, we
can be confident that these means will follow a normal distribution. This allows us to apply
statistical techniques such as calculating confidence intervals, conducting t-tests to compare
the means of two different samples, or performing ANOVA to determine if there are differences
among the means of three or more samples.

As a rule of thumb, the sample size should be at least 30 for the Central Limit Theorem to
be applicable. This guideline is not universally applicable. For populations with significant
skewness or outliers, larger sample sizes may be needed for the Central Limit Theorem to
hold. Conversely, if the population distribution is already normal, even smaller sample sizes
will yield a distribution of sample means that is approximately normal.
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