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Preamble
Summary

This module is about Hidden Markov Models.

General objective

= Describe in your own words Hidden Markov Models.
= Explain the decoding, likelihood, and parameter
estimation problems.
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Preamble
Reading

= Pavel A. Pevzner and Phillip Compeau (2018)
Bioinformatics Algorithms: An Active Learning Approach.
Active Learning Publishers.
http://bioinformaticsalgorithms.com
Chapter 10.

= Yoon, B.-J. Hidden Markov Models and their Applications
in Biological Sequence Analysis. Curr. Genomics 10,
402-415 (2009).

= A. Krogh, R. M. Durbin, and S. Eddy (1998) Biological
Sequence Analysis: Probabilistic Models of Proteins and
Nucleic Acids. Cambridge University Press.
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HMM: Applications

Gene prediction
Pairwise and multiple sequence alignments

Protein secondary structure

B e e

ncRNA identification, structural alignments, folding and
annotations

5. Modeling transmembrane proteins
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Preamble

Hidden Markov Models (HMM)

“A hidden Markov model (HMM) is a statistical model that can be
used to describe the evolution of observable events [symbols]| that
depend on internal factors [states], which are not directly
observable.”

“An HMM consists of two stochastic processes (..)":

= Invisible process consisting of states
= Visible (observable) process consisting of symbols

= Yoon, B.-J. Hidden Markov Models and their Applications
in Biological Sequence Analysis. Current Genomics 10,
402-415 (2009).
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Preamble
Definitions

We need to distinguish between the sequence of states (7) and
the sequence of symbols (5).

The sequence of states, denoted by 7 and called the path, is
modeled as a Markov chain, these transitions are not directly
observable (they are hidden),

kgl = P(7T,' = /|7I',-,1 = k)

where ay is a transition probability from the state my to .

Each state has emission probabilities associated with it:

the probability of observing/emitting the symbol b when in state
k.
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Preamble
Definitions

The alphabet of emited symbols, ¥, the set of (hidden)
states, (), a matrix of transition probabilities, A, as well as a
the emission probabilities, E, are the parameters of an HMM:
M=<X QA E>.
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Preamble
Remark

A path is modelled as a diescte time-homogeneous first-order
Markov chain.

= Memoryless: The probability of being in state j at the
next time point depends only on the current state, J;

= Homogeneity of time: The transition probability does
not change over time.
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Preamble
Interesting questions

1. P(S,m): the joint probability of a sequence of symbols S
and a sequence of states 7. The decoding problem
consists of finding a path 7 such that P(S, 7) is maximum;

2. P(5]0): the probability of a sequence of symbols S given
the model 6. It represents the likelihood that sequence S
has been produced by this HMM, let’s call this the
likelihood problem:;

3. Finally, how are the parameters of the model (HMM), 6,
determined? Let's call this the parameter estimation
problem.
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Example
Definitions

Joint probability of a sequence of symbols S and a sequence of
states 7

L
P(577T) = aom, H eﬂi(s(i))aﬂiﬂiﬂ
i=1
P(S = VGPGGAHA, = = BEG, My, My, I3, s, Is, Ms, Ma, Ms, END)

= However in practice, the state sequence 7 is not known in
advance.
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Example

Worked example: the occasionally dishonest player

A simplified example will help better understanding the
characteristics of HMMs.

| want to play a game. | will be tossing a coin n times. This

information can be represented as follows: { H, T, T, H, T, T, ..}
or {011,011, ..}

In fact, | will be using two coins! One is fair, i.e. head and tail
are equiprobable outcomes, but the other one is loaded (biased), it
returns head with probability % and tail with probability %.

| will not reveal when | am exchanging the coins. This information
is hidden to you.

Objective: Looking at a series of observations, S, can you
predict when the exchanges of coins occurred?
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Example

Worked example: the occasionally dishonest player

.9 2
[\ :
P(0)=1/2 . P(0)=1/4
P(1)=1/2 . P(1)=3/4
m, 4 m,

Such game can be modeled using an HMM where each state
represents a coin, with its own emission probability distribution,
and the transition probabilities represent exchanging the coins.
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Example

Worked example: the occasionally dishonest player

.9 B
[\ :
P(0)=1/2 . P(0)=1/4
P(1)=1/2 . P(1)=3/4
m, 4 m,

Given an input sequence of symbols (heads and tails), such as 0,
1,1,0, 1, 1, 1, which sequence of states has the highest
probability?
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Decoding

Worked example: the occasionally dishonest player
S 0o 1 1 0 1 1 1

T m w w W W W1
T m ®w W W W W1 T
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Decoding

Worked example: the occasionally dishonest player

(cont.)

Since the game consists of printing the series of switches from one
coin to the other, selecting the path with the highest joint
probability, P(S, ), seems appropriate.

Here, there are 27 = 128 possible paths, enumerating all of them is
feasible.

However, the number of states and consequently the number of
possible paths are generally much larger: O(M"), where M is the
number of states and L is the length of the sequence of symbols.
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The decoding problem

Given an observed sequence of symbols, S, the decoding problem
consists of finding a sequence of states, , such that the joint
probability of S and 7 is maximum.

argmax, P(S, )

For our game, the sequence of states is of interest because it
serves to predict the exchanges of coins.
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The decoding problem

If the observed sequence of symbols was of length one, the
sequence of states would also be of length one (in our restricted
example).

Which state would you predict if the observed symbol was a 07
What if it was a 17

Now consider an observed sequence of length two, let’s assume
that the last symbol is 1, what is the probability of that symbol
being emitted from state 717

There are two ways of ending up in 71 while producing 5(2): 1)

5(1) could have been produced from 71, and the state remained
71, or 2) 5(1) could have been produced from 7, and there was a

transition 7y to m;. The two joint probabilities would be
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Decoding

The decoding problem (cont.)

P(S(1)|m1)P(m1 — m1)P(S(2)|r1) and
P(S(l)‘ﬂz)P(ﬂz — 7T1)P(5(2)’7T1).
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The decoding problem

Now consider an observed sequence of length three, let's assume
that the last symbol is 1, what is the probability of that symbol
being emitted from state m;7?

There are two ways of ending up in 71 while producing S(3): 1)

the last state that led to the production of the sequence of symbols
S[1,2] was 71 and the state remained 71, or 2) the last state that
led to the production of the sequence of symbols S[1,2] was 7
and it is followed by a transition 7 to 71, with probability ap;.

Let's define vk(i) as the probability of the most probable path
ending in state k while producing the observation i. Using this
notation for formulating the probabilities for the above two
scenarios.

v1(3) = max [ v1(2) x a1 X e1(0), va(2) X a21 x €1(0) ]
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The decoding problem

For our 2 states HMM, we can write the following equation,

Vl(i) = maxX [ Vl(i— 1) X air X el(S(i)), Vg(i— 1) X az1 X el(S(i)) ]

V2(i) = maxX [ Vl(i— 1) X aip X 62(5(1)), Vg(i— 1) X azo X 62(5(1)) ]
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The decoding problem
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The decoding problem

The most probable path can be found recursively. The score for
the most probable path ending in state / with observation /i, noted
v((i), is given by,

V/(i) = e/(S(i)) m/?x[vk(i— 1)ak/]
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Decoding

The decoding problem (cont.)

Vk (i-1)
e, (S(i)
&

where k is running for states such that ay, is defined.
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The decoding problem

The algorithm for solving the decoding problem is known as the
Viterbi algorithm. It finds the best (most probable) path using
the dynamic programming technique.
Initialization:

w=1Lv,=0, k>0
Recurrence:

V/(i) == e/(S(i)) ml?X(Vk(i_ 1)ak,)

where, vi(/) represents the probability of the most probable path
ending in state k and position i in S.

A pointer (backward) is kept from / to the value of k that
maximizes vi(i — 1)ag.
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Decoding

The decoding problem (cont.)

= Implementation issue: because of the products (small)
probabilities leads to underflow the algorithm is implemented using
the logarithm of the values and therefore the products becomes

sums.
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Decoding

The decoding problem

5(1)

5(2)

5(3)

Marcel Turcotte

S(n-1)

S(n)
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The decoding problem

# transition probabilities (t)
$t[0]1[0] = 0.9; $t[01[1] = 0.1;
$t[1]1[0] = 0.2; $t[1]1[1] = 0.8;

# emission probabilities (e)
$e[0][0] = 0.50; $el[0][1] =
$e[1]1[0] = 0.05; $el[11[1] =

|
o
a
o

|
o
©
o

# observed sequence (S)
s = (0, 1, 0, 1, 0, 1, 1,1, 1, 1, 1, 1);

# initialization (d is the dynamic programming table)

$dl 0 J[ 01 =%e[ O 1L $s[ 01 1;
$dl 1 J[L 01 =%el[ 1 I[ $s[ 01 1;
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The decoding problem

for ( $j=1; $j < @S; $j++ ) {
for ( $i=0; $i <= 1; $i++ ) {
$m = 0;
for ( $k=0; $k <= 1; $k++ ) {
$v = $A[$k] [$j-11*$t [$k] [$i]*$e[$i] [$S[$51];
if (($v > $m ) {
$from = $k; $to = $i; $m = $v;

}

}

$dl $1 J[ $j 1 = $m;

$tr[ $1i 1[ $5 1 = "($from—>$to)";
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Decoding

The decoding problem

for ( $i=0; $i <= 1; $i++ ) {
for ( $j=0; $j < @s; $j++ ) { printf "\t%5.5f", $d[ $i I1[ $j 1; }
print "\n";
for ( $j=0; $j < @S; $j++ ) { printf "\t %s", $tr[ $i 1[ $j 1; }

print "\n";
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Decoding

The decoding problem

t[0][0] = 0.9; t[0][1] = 0.1; t[1][0] = 0.2; t[1][1] = 0.8;
e[0][0] = 0.50; e[0][1] = 0.50; e[1][0] = 0.05; e[1][1] = 0.95;

0 1 0 1 0 1 1 1 1 1 1 1
0.50000 0.22500 0.10125 0.04556 0.02050 0.00923 0.00415 0.00187 0.00084 0.00038 0.00017 0.00008
(0->0) (0->0) (0->0) (0->0) (0->0) (0->0) (0->0) (0->0) (0->0) (0->0) (0->0)

0.05000 0.04750 0.00190 0.00962 0.00038 0.00195 0.00148 0.00113 0.00086 0.00065 0.00049 0.00038
(0->1) (1->1) (0->1) (1->1) (0->1) (1->1) (1->1) (1->1) (1->1) (1->1) (1->1)
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The decoding problem

= Given an HMM representing a protein family as well as an
unknown protein sequence, the solution to the decoding
problem reveals the internal structure of the unknown
sequence, showing the location of the insertions and
deletions, core elements, etc.;
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Likelihood

The likelihood problem: calculating P(5]60)

In the case of a Markov chain there is a single path for a given
sequence S and therefore P(S]0) is given by,

P(5]0) = H as(i-1)s

In the case of an HMM, there are several paths producing the
same S (some paths will be more likely than others) and P(5]6)
should be defined as the sum of all the probabilities of all possible
paths producing S,

P(S5]6) = ZPS?T)

The number of paths grows exponentially with respect to the
length of the sequence, therefore all the paths cannot simply be
enumerated and summed.
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Likelihood

The likelihood problem: forward algorithm

Modifying the Viterbi algorithm changing the maximization by a
sum calculates the probability of the observed sequence up to
position i ending in state /,

—e/ ka/—lak/
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The likelihood problem

The score represents the probability of the sequence up to (and
including) S(i), noted f(i), is given by,

(i) = e(S() > [fili — 1) ]
k
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Likelihood

The likelihood problem (cont.)

e, (S(i)
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Model Specification
Forward Algorithm

Can you think of an application for the forward algorithm?

Pfam is a large collection of HMMs covering many common
protein domains and families, one HMM per domain or family,
version 30.0 (June 2016) contains 16306 families.

Given a new sequence, the forward algorithm can be used for
finding the family that it belongs (if any).

= pfam.xfam.org
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Model Specification

Model Specification

We now turn to our third and final question. How to determine the
parameters of the model?

Let x1,...,xn be m independent examples forming the training set

(typically, m sequences), the objective is to find a set parameters,
6, such that

max N, P(xi|0)
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Model Specification

Model Specification

= Structure: states + interconnect;
(This is an occasion to include domain specific
information!)

= Estimating the transition/emission probabilities.
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Model Specification
Modeling the length

&
o

A
A
]

9,

At least 5 symbols long

2 to 8 symbols long
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Model Specification

Arbitrary Deletions

——— | ———] ———| &

Too expensive, too many parameters to evaluate!
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Model Specification

Arbitrary Deletions (cont.)

——— ——e —— L g

Silent (null) states do not emit symbols.

= Silent states prevent modeling specific distant transitions.
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Profile HMMs

Begin

Model Specification

End

= Models insertion/deletions separately.

Marcel Turcotte
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Model Specification
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Model Specification

Trans-membrane (helical) proteins (cont.)

A ytoplasmi ic side

B helix core
1 23 45 6 7 8 22 23 24 25

Figure 1: The structure of the model used in TMHMM. A) The overall layout of the model. Each box corresponds to one or
more states. Parts of the model with the same text are tied, i.e. their parameters are the same. Cyt. means the cytoplasmic side
of the membrane and non-cyt. the other side. B) The state diagram for the parts of the model denoted helix core in A. From
the last cap state there is a transition to core state number 1. The first three and the last two core states have to be traversed,
but all the other core states can be bypassed. This models core regions of lengths from 5 to 25 residues. All core states have
tied amino acid probabilities. C) The state structure of globular, loop, and cap regions. In each of the three regions the amino
acid probabilities are tied. The three different loop regions are all modelled like this, but they have different parameters in some
regions.

bioinformatics
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Estimation

Gene prediction

Flanking region 5UTR Exon 1 ntron | Exon 2 Exon N3UTR Flanking region
SH{ O HCHHH ham—aa—- - - ——3
‘ GT AG GT AG ‘ |
GC GC Poly (A)
box box Initiation op
codon codon
CAAT TATA
box box

Transcription
initiation
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Estimation

Gene prediction (cont.)

404 Current Genomics, 2009, Vol. 10, No. 6 Byung-Jun Yoon

1% position of codon
} o

2 position of codon
3 position of codon

x ATGCGACTGCATAGCACTT observed symbols
y EEEEEEEFEE | | | ||EEEEEE, hiddenstates

intron

exon exon

Fig. (1). A simple HMM for modeling eukaryotic genes.
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Gene prediction (cont.)

= genes.mit.edu/GENSCAN.html
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Estimation

The parameter estimation problem

Problem: estimate the as; and ex(b) probabilities.
Given:

= a fixed topology;
= nindependent positive examples: 51, 5,,...,5,.

log P(S1, Sz, ..., Sal0) = > log P(S1(6)

=1
Two scenarios:

= The paths are known
(CG islands, secondary structure, gene prediction);
= The paths are unknown.
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Estimation
Parameters estimation /known paths

= Maximum likelihood estimators are

A E(D)
> Awr >y Ex(b)

akl

* Necessitates large number of positive examples;

» |If a state k is not visited than numerator and
denominator are zero;

* P(x,7) is a product of probabilities, what happen if an
arc/emission is zero?

= Work around?

v A=A+
- Ek(b) = Ek(b) + rk(b)
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Estimation

Parameters estimation/known paths (cont.)

where ry and ry(b) are pseudocounts. The simplest
pseudo count would be ry =1 and r,(b) = 1. Better
pseudocounts would reflect our prior bias, using observed
frequency of amino acids or derived from substitution
scores.
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Estimation

Parameters estimation: remarks

Some (emission, transition) probabilities can be zero, if this is the
case then all path involving those probabilities would have
probability zero as well. In particular, this would happen if the
number of sequences used to build the model is low, “strong
conclusions would be drawn from very little evidence”.

To circumvent that problem, pseudocounts are added prior to
calculating the frequencies. The simplest pseudocounts consist in
initializing all the counts to one; rather than zeros before counting
the number of occurrences of each event.

In the case of the emission probabilities, this would be assuming
that all amino acids are equiprobable. Since counts don’t need to
be integers, a solution would be to initialize the counts with a
value between zero and one, proportional to the overall distribution
of the amino acids.
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Estimation

Parameters estimation: remarks

More sophisticated pseudocounts would reflect the distribution of
the amino acids at that position. For example, if leucine occurs
with a high frequency at that position, you would expect that
isoleucine would occur with a high frequency too, but not arginine
— in the PAM250 scoring matrix, the score for substituting leucine
and isoleucine is 2.80 whilst the score for leucine arginine is -2.2.
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Estimation

Parameters estimation /unknown paths

It is also possible to estimate the emission/transition probabilities
when the paths are unknown.

In the case of profile-HMMs, it is possible to estimate the
parameters of the HMM starting with a set of unaligned sequence.

The details of these methods are complex, but the general idea is
as follows: the model is initialized with more or less random values
(we say more or less because one can use prior knowledge about
the distribution of the amino acids or a rough sequence alignment
as a starting point).

The model is used to aligned the sequences from the training set,
the alignment is then used to improve the parameters of the
model. The “improved” model is used to align the training
sequences again, in general, this will lead to a slightly improved
alignment, which is used again to improve the probabilities of the
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Estimation

Parameters estimation/unknown paths (cont.)

model, the process is repeated until no improvement of sequence
alignment is observed.

The scheme for parameter estimation is called
"Expectation-Maximization”, one of the standard algorithms for
model estimation is called Baum-Welch or forward-backward
algorithm.

One the main problem or limitation with this technique is that it
converges toward a local optimum, i.e. it is not guaranteed to find
the most probable model given the observed data.
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Estimation

Expectation-Maximization (EM) algorithm

1. Choose an initial model. If no prior information is
available, make all the transition probabilities
equiprobable, similarly for the emission probabilities;

2. Use the decoding algorithm for finding the maximum
likelihood path for each input sequence;

3. Using these alignments, tally statistics for estimating all
ai and e(b) values;

4. Repeat 3 and 4 until the parameter estimates converge.
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Estimation
Summary

Like Markov Chains, Hidden Markov Models (HMMs) consist of a
finite number of states, 71,72, ..., and transition probabilities,
P(7T,' — 7TJ').

Unlike Markov Chains, HMMs also “emit” a symbol (letter) at
each (most) states.

Sequence of states m = 7y, 7> . ..

Sequence of observed symbols S = 5(1), 5(2)...

Given a new observation, the sequence of symbols is known
(observed) but not the sequence of states, “it is hidden”.
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Estimation
Historical note

HMMs were first developed for solving speech recognition problems
in the early 1970s.

1. A speech signal is divided into frames of 10 to 20
milliseconds;

2. A process called vector quantization assigns a predefined
category to each frame (typically 256 predefined
categories);

The input is now represented as a long sequence of category labels
(symbols).

The next task is to recognize words in this long sequence of
categories.

However, variations are observed (that will be seen as category
substitutions, insertions and deletions).

HMMs were developed in such context.
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Estimation

Historical note (cont.)
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Estimation
Example: CG islands

[ From Durbin et al. Biological Sequence Analysis. |

Certain regions of the human genome are known as CG (or CpG)
islands.

These regions, located around promoters or start regions of many
genes, show a higher frequency of CG dinucleotides than
elsewhere”.

Those regions are a few hundred to a few thousand bases long.

“this is because whenever C is followed by G the chances that C will be
methylated are higher (adding CHs group to its base), also, methylated Cs
mutate to T with high frequency, therefore CG dinucleotides are observed less
frequently than expected by chance, P(C) x P(G), finally, methylation is
suppressed in biologically important regions such as the start of a gene which
explains the fact the CGs occurs there more frequently then elsewhere.
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Estimation
Example: CG islands

Problem 1: Given an unlabeled (short) sequence of DNA, can we
decide if it comes from a CG island or not?

= promoter: a site on DNA to which RNA polymerase will bind
and initiate transcription.
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Estimation

Example: CG islands (cont.)

Locus AL162458 150791 bp DNA PRI 29-SEP-2000
DEFINITION Human DNA sequence from clone RP11-465L10 on chromosome 20.

misc_feature 20670..21997
/note="CpG island"

20641 ...C GCGCGGGTGC CAGGACCCAG GTCCTTGCTA
20701 CGTCCGGAGC CTACGTCACC ACGATGCCTC CCCTGGGCCG GCGGCAGAAC CCGAGACCCC
20761 CGCAGGTTCT AAGACAGCCC CCACGCCCCC CAGTGCGCAC GCTCAGTCCA ACCCCGCCGC
20821 GCACCGCCCA CCGCGAACAT CCGGCTCCTG CGTGTGTGCT CGAGGGGGAA ACTGAGGCGG
20881 GGACGTGCCA GTGAATTCAT TCCTTCCTCA GTCCACCCGC AGGCCTACAA AGCTGTCTCC
20941 CCTTCCTCAG CGCCACAAGG AACAGCAGGG ACGGATGGGA AGAAGGGGAG GGGGCCGAAA
21001 GCAAGCTGGG TGCGAGGAGC CAGCCGACCC TGCCACACTC AAGATGGCGG CGCGGCCGCG
21061 GCGAGGTCCC TCAGAGGCGG TACCAGCGCA TGCGCAGCGC GGAGTCCCGG CCCGGGACAC
21121 AAGATGGCGG CAGCGGCGCT GGGGAGGGCG AGGCGGAGGC GGCAAAACGG GCGGTCGAGC
21181 AGAACGTGTA GCCGCGTCCC CTCCAGTCCG CTCCGGGCAG GTAAGAGTCC CAGGAAGCCA
21241 TGGTCCCGCA GCGAGCCGCG CCAGGGTCTG GGGATCCGAA GCTGGGGGGC GGCGGCCCCT
21301 CCGGCGCTTT CTGCTCGGGA CTGCCGCTTG CCCTGTCTCT GTTGCCGCCG CCATCTTAGA
21361 CCCGCGGGTG GGCGGCCGCG CCGGTGGCCG AAGTGAGGGA GGTGGGCCCG GAGAGCCCCA
21421 GCGGAGCGGG CTCTAGGGCC CCTCCGCTGC TGCCGCCGCC ACCGCCTTTG TGTCGGGCTC
21481 CGACTCTGAG TCGCCTCAGC CCGGGGGCGG GAGCGCGCGG CGGGGCGGGG GGCGGAGCCC
21541 GAGAGATGGG CCGGCGCGCG CGCGCGCGCC AAACAGCCCA CCCTCGCTGG GGTAGGGGGA
21601 GGGGAAGGTG CGCGCGCGCG CGCGCGCTGG AGCTCGCCTC TCGCCTTCGT GCGCCGTCGC
21661 GCCTGCGTAC TTTGTTCGCC CTTTGACTCC TCCCTACTGG GCCGGAGAAT TCTGATTGGT
21721 ACATTGCGGA GATGGTCCCG CCCCACGTGC CTCCAATCCC GGACTCGGAC TCTGGCTTCT
21781 GGTGGGTTTT TCTGGTTGCG CAGATAGAGT TGTTTATCCT TGAGCAGCGG TAATTCTCAA
21841 ACTGCGGTAT GCGTGGGGGT CGGGAAGCCA CAGGATAAAT AAAGACGTTA ACTTAAGAGC
21901 AGTTATGTCT TACTGGGAGC GTACAATGCT GGACTCTACA TATAACGGTC GAGTGATTCC
21961 GGTTTATAAG CCGGAAAGCA GAAGGGCCCG GAATCCG...

Q
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Estimation
Probabilistic model of a sequence

P(x) = P(x,xi-1,---,x1)
= Plx|xi—1,...,x1)P(xe—1|xi—2...,x1) ... P(x1)

(by application of the general multiplication rule)
For example the probability of CGAT:

P(CGAT) = P(T,A,G,C)
= P(TIA, G, O)P(A|G, C)P(G|C)P(C)
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Estimation
Probabilistic model of a sequence

Under the assumption that positions are independent from one
another,
P(xi|xi—1 ..., x1) = P(x;),

P(X) = P(XL‘X[_fl, Ce ,Xl)P(XLfl‘XL,Q e ,Xl) Ce P(Xl)
= P(X[_)P(XLfl) e P(Xl)
P(CGAT) = P(TIA, G, C)P(A|G, C)P(G|C)P(C)
= P(T)P(A)P(G)P(C)
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Estimation
Markov Chains

However under the assumption of an underlying (first order)
Markovian process (memory less), P(xi|xj-1...,x1) = P(xi|xi—1),
and the previous equation can be rewritten as follows:

P(x) = Plxi|xi—1,-..,x1)P(xe—1|xt—2...,x1) ... P(x1)
= P(XL‘X[_,l)P(XL,ﬂX[_,z) N P(X2|X1)P(X1)

In the previous example:

P(CGAT) P(T,A, G, C)

P(TIA)P(A|G)P(G|C)P(C)
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Estimation
Graphical Formalism for Markov Chains
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Estimation

Graphical Formalism for Markov Chains (cont.)
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Estimation

Graphical Formalism for Markov Chains (cont.)
as = P(S(i) = t/S(i— 1) = s).

=- transition probabilities, as, are associated with the arcs of this
graph.



Estimation
Markov Chains

ast = P(S(i) = t|S(i — 1) = s) is the probability that symbol t is
observed at position i knowing that s occurs at position i — 1.
Therefore P(S) can now be written as follows,

P(S) = P(S(1) I ] asii-1)s(h
i—2

Here the concept of time (involved in the development of PAM

matrices) has been replaced by that of space, with similar

observations,

= memory less: the probability that symbol a occurs at

position i depends only on what symbol is found at
position i — 1; and not any other / < /— 1.

= homogeneity of space: the probability that symbol a
occurs at position /i does not depend on the particular
value of i (e.g. i= 123 or i = 162,144).
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Estimation

Markov Chains (contd)

Higher-order Markov models are interesting for modeling DNA
sequences; in particular for modeling coding regions, the codon

structure.

A Markov chain of order k is a model where the probability that
symbol a occurs at position i depends only on what symbol is
found at positions i—1,i—2...i— k, and not any other / < i— k.
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Estimation

Markov Chains (contd)

Markov chains are particularly convenient for two reasons,
= P(S(1)|S(i—1)...5(1)) would be difficult to estimate (do
you see why?);
= They lead to computationally efficient algorithms.
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Markov Chains (contd) (cont.)
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Estimation

Markov Chains (contd) (cont.)

= In the above model a sequence can start and end anywhere.
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Markov Chains (contd) (cont.)
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Estimation

Markov Chains (contd) (cont.)

= 1) Allows modeling start/end effects, P(Stop|T) could be
different than P(Stop|G), 2) models the distribution of lengths of
the sequences, 3) defines a probability distribution of all possible
sequence (of any length)(sum to 1), 4) lengths decays
exponentially.
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Methodology

= Durbin et al. collected a large number of positive and
negative examples of CG islands, almost 60,000
nucleotides in all;

= Construct a Markov Model for the positive examples and
one for the negative examples, this involves estimating the
transition probabilities;

= To use the models for discrimination, calculate the
log-odds ratio.
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Estimation

Maximum Likelihood Estimators

+
4 Cst

st T
Zt st/

a

= al, = 816/(816 + 902 + 1296 + 1776) = 0.17
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Estimation

Maximum Likelihood Estimators

+
A
C
G
T

| A C G T
0.180 0.274 0.426 0.120
0.171 0.368 0.274 0.188
0.161 0339 0.375 0.125
0.079 0.355 0.384 0.182

| A C G T
0300 0205 0.285 0.210
0.322 0.298 0.078 0.302
0.248 0.246 0.298 0.208
0.177 0239 0.292 0.292

o0 > |
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Estimation

Maximum Likelihood Estimators (cont.)

= Markov Model for the positive examples of CG islands.



Estimation

Maximum Likelihood Estimators (cont.)

= Markov Model for the negative examples of CG islands.
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Estimation
Discrimination

To test if a sequence S of length n is likely to be a CG island, the
log-odds ratio of the two models is computed,

P(S|Model+-) i' as(, 1)(7)

g—
P(S|Model—) = as(i-1)s()

which could also be written as,
n
> log s(S(7). S(i — 1))
i=1
where,

s(s, t) = ~
st
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Estimation
Summary

= Each state is associated with a single symbol;
= Models dependencies between adjacent positions;
= Transition probabilities act.
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Estimation
Pitfalls

= MM for CG islands can only test entire sequences;



Pitfalls (cont.)

&
OSbSte S
&
osbeger




Estimation

= In this case, small probabilities of switching from one
model to the other;
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Estimation

CG island (contd)

In the case of the hidden Markov model for the CG island the

probabilities of emission are all 1 or 0.
The probability that a sequence CGCG being emitted by the
following path in our model C;, G_, C_, G, is given by,

astart,C, x 1 x ac+,G_ x 1 X aG_,c_ x 1 x ac_,G, x 1 X aG, end



Estimation

CG island (contd) (cont.)

In fact, finding the path 7 such P(S,7) is maximum is often the
goal.

What does it mean?

Assuming the transition and emission probabilities are known for
the CG island HMM.

Given a new/unlabeled sequence S, i.e.

S= CGCCG ... CGCATG

we don't know which state was used to emit a given symbol, for
example was the first C emitted from C; or C_, was the G second
position emitted from G4 or G_, and so on, find the path 7 such
that P(S, ) is maximum will tell us what are the most likely
locations for the CG islands:

5: C+G+C+C+G+ e C+G+C,A7T,G+
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Estimation

CG island (contd) (cont.)

The most probable path:

7 = argmax, P(S, )



Estimation

Viterbi: Dynamic Programming Table

C G C G

Start 1 0 0 0 0
A, 0 0 0 0 0
C. 0 0.13 0 0.012 0
Gy O 0 0.034 0 0.032
7. 0 0 0 0 0
A 0 0 0 0 0
C_ 0 013 0 0.0026 0
G_. 0 0 0.010 0 0.00021
T 0 0 0 0 0
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Estimation
Viterbi

The “best path”, sequence of states, determined by the Viterbi
algorithm identies the CG islands within a genomic sequence.
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Estimation

Viterbi (con
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Estimation

Probabilistic Models

= Hypothesis: positions are independent from one another
= Pairwise alignment (PAM, BLOSUM, etc.)
Given two aligned sequences, S} and S, the score of an
alignment is given,

n

> s(Si(0), %(1))

i=1

= Position specific scoring scheme
Given a sequence S and a probabilistic model M of a
sequence family/motif, represented a matrix, f, of size
20 x n, where f(a, i) represents the probability that amino
acid a occurs at position i in this family/motif,
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Estimation

Probabilistic Models (cont.)

or a log-odds score: Y7 ; s(5(), i), where

s(a, i) = log %
= Markovian models: Markov chains and hidden Markov

models

* Modelling the distribution of the amino acids within gaps
and their length.
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Estimation

Pairwise (Multiple) Alignment
Vs

Profiles

VS
Hidden Markov Models

= Pairwise — uniform scoring system along the sequence
Profiles — position specific scoring scheme

* HMMs — insertions/deletions modelled separately +
variable topology (including simple grammatical
structures).

Marcel Turcotte CSI5126. Algorithms in bioinformatics



Applications of MCs and HMMs

bacterial gene finders (MC)

mRNA splicing (MC)

trans-membrane helix prediction
modeling signal peptides

modeling families of aligned proteins
multiple sequence alignment
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Estimation
Pfam

Pfam is a large collection of multiple sequence alignments and
hidden Markov models covering many common protein domains.
Version 5.5, September 2000, 2478 families.

Large coverage of known proteins (~ 63%).

= www.sanger.ac.uk/Software/Pfam /index.shtml
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Estimation
Web resources

HMMER by Sean Eddy,

hmmer.org

SAM from UCSC's Computational Biology Group,
www.cse.ucsc.edu/research /compbio/sam.html
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Estimation

References
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Estimation

Pensez-y!

L'impression de ces notes n'est probablement pas nécessaire!
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