CSI5126. Algorithms in bioinformatics

RNA Secondary Structure Search Problem

Marcel Turcotte

N

School of Electrical Engineering and Computer Science (EECS)
University of Ottawa

Version November 20,2018

Marcel Turcotte CSI5126. Algorithms in bioinformatics



Preamble
Summary

We learnt that RNA evolves so as to preserve bair pairs patterns
more than sequence. We discussed the impact on traditional
bioinformatics approaches. Finally, we derived a dynamic
programming algorithm to solve the inference problem. In this
lecture, we will consider the search problem.

General objective

Implement a pattern matching algorithm using context
free grammars specifically to detect sequences who
could fold into a specific structure.

Reading

Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme
Mitchinson (1998). Biological sequence analysis.
Probabilistic models of proteins and nucleic acids.
Cambridge University Press. Pages 277-297.
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Preamble

Project

= Presentations: 20 minutes
Tuesday, November 27,2018
Thursday, November 29, 2018
* Tuesday, December 4,2018

-
-

https://docs.google.com/document/d/1gfcGDWWF4iLxpxLEAaBHDi-aY60me_p9D5RE2evLIEO
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Inference problem

Summary

RNA molecules play important cellular roles
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Inference problem
Summary

RNA molecules play important cellular roles
Secondary structure is more preserved than sequence
Nussinov-Jacobson is an O(n?) algorithm that
maximizes the total number of base pairs

MFOLD (by Zuker) is an O(n?) algorithm that minimizes
the free energy

The accessible pairs, cycles and order notation are key
to understand the recurrence equations of MFE methods

Consensus methods*, based on Sankoff 1985 algorithm,
perform more consistently, but have a high time/space
complexity

*Simultaneous alignment and folding
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Inference problem

RNA secondary structure

GCACGACACUAGCAGUCAGUGUCAGACUGCATACAGCACGACACUAGCAGUCAGUGUCAGACUGCATACAGCACGACACUAGCAGUCAGUGUC
CCCCC e CCCCC e (e e e CCCCCene )DDDDERESDDDD RETE CCCCC o (G )DDDDERESDDDD RETE )N
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Inference problem

Inference problem: Nussinov-Jacobson

i1 -1 vl i i+l j P
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Inference problem

Nussinov-Jacobson algorithm

Initialisation:
v(i,i+k) = 0 fork=0tolandfori=1ton—k.
Recurrence:
i+ 1,j=1)+6(.));
et 2

MmaXj<k<(j—1) [v(i, k) +~v(k + 1,))].
Matching score:

5(i,j) = l,ifaj:a; € {A:U,U:A,G:C,C:G} U{G:U,U:G};
)= 0, otherwise.
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Inference problem
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Inference problem
Other paradigms

Reporting sub-optimal structures (MFOLD, SFOLD)
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Inference problem
Other paradigms

Reporting sub-optimal structures (MFOLD, SFOLD)
Partition function and the McCaskill’s calculation of P’s
Folding kinetics, identifying ribo-switches

MFE for secondary structure for interacting RNA
molecules

Partition function for secondary structure for
interacting RNA molecules

Non-coding RNAs (ncRNA genes) identification
(EvoFold, RNAz...)
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Inference problem
Now what?

A secondary structure was inferred!

It can be analyzed in order to propose new experiments,
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Inference problem
Now what?

A secondary structure was inferred!

It can be analyzed in order to propose new experiments,
to propose a mechanism of action, or to develop novel
therapeutic approaches (a new drug for instance)

It can be used for finding new members of its family
(homologues) and this requires adapted database
searching techniques

It can serve as a starting point for predicting the
three-dimensional structure
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Search problem
Database search problem

Find all sequences matching a user specified secondary structure
motif or all the sequences that can be folded into a user
specified structure

|:"> —
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Search problem

Non-probabilistic approaches

The first practical approaches were non-probabilistic

A description language allows the users to represent
structural motifs, and search databases

RNAMOT, RNABOB, PatScan, and RNAMOTIF
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parms

wc += gu;
descr
h5(minlen=6,maxlen=7) %
ss(len=2) T e protaryeies,
h5(minlen=3,maxlen=4) o My AR
ss(minlen=4,maxlen= .
h3 il | peiesw
ss(len=1) WL oam ws,
h5(minlen=4,maxlen=5) L
ss(len=7) e e
h 3 lgth=7|
ss(minlen=4,maxlen=21) amalnasgy e
h5(minlen=4,maxlen=5) & \43:
ss(len=7)
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ss(len=4)



RNAMOT

= Gautheret D., Major F. & Cedergren R. (1990) Pattern
searching/alignment with RNA primary and secondary
structures: an effective descriptor for tRNA. Comp. Appl.
Biosc. 6,325-331.

= Laferriere A., Gautheret D. & Cedergren R. (1994) An RNA
pattern matching program with enhanced performances
and portability. Comp. Appl. Biosci. 10, 209-210.

= rna.igmors.u-psud.fr/gautheret/download
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Search problem
RNABOB

RNABOB is an implementation of D. Gautheret’s RNAMOT,
but with a different underlying algorithm using a
non-deterministic finite state machine with node
rewriting rules. (Computer scientists would probably
cringe in horror. It works, and it’s fast, but is it street legal
in a computer science department? Who knows.) If you’re
looking for an RNA motif that fits a hard consensus pattern
— a la PROSITE patterns, but with base-pairing — you might
check out RNABOB.

= http://eddylab.org/software.html
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RNAMOTIF

Macke et al. (2001) Nuc. Acids. Res. 29(22):4724-4735.
Sophisticated scripting language

Matches can be ranked using a user-defined scoring
function

Minimum free energy can be used in the definition of
the scoring function

casegroup.rutgers.edu/casegr-sh-2.5.html
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Search problem

Discussion

What are the main limitations?
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Search problem
Discussion

What are the main limitations?
These computer programs are practical and can be
applied to large data-sets

Hard consensus pattern means hit-or-miss
* The major difficulties arises from the subjectivity in
deriving the best descriptor for a family of sequences

* Itcan be quite difficult to design a pattern with both high
sensitivity and high specificity
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How can one move away from “hard” patterns?
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Discussion

How can one move away from “hard” patterns?

= Edit-distance
* G. Myers. Approximately matching context-free languages.
Information Processing Letters vol. 54 (2) pp. 85-92, 1995.
= O(P°N88P), where Pis the size of the grammar and N is
length of the string.
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Search problem
Discussion

How can one move away from “hard” patterns?

Edit-distance
* G. Myers. Approximately matching context-free languages.
Information Processing Letters vol. 54 (2) pp. 85-92, 1995.
= O(P°N88P), where Pis the size of the grammar and N is
length of the string.

k-mismatches
* N. El-Mabrouk, M. Raffinot, J.E. Duchesne, M. Lajoie and
N. Luc. Approximate Matching of Secondary Structures.
Journal of Bioinformatics and Computational Biology, Vol.
3, No. 2, pp. 317-342, 2005.
* O(krpn), kis error threshold, n is string size, p is
secondary structure size, r is number of “union” symbols
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Search problem
Discussion

How can one move away from “hard” patterns?

Edit-distance
* G. Myers. Approximately matching context-free languages.
Information Processing Letters vol. 54 (2) pp. 85-92, 1995.
= O(P°N88P), where Pis the size of the grammar and N is
length of the string.
k-mismatches
* N. El-Mabrouk, M. Raffinot, J.E. Duchesne, M. Lajoie and
N. Luc. Approximate Matching of Secondary Structures.
Journal of Bioinformatics and Computational Biology, Vol.
3, No. 2, pp. 317-342, 2005.
* O(krpn), kis error threshold, n is string size, p is
secondary structure size, r is number of “union” symbols

Probabilistic, a principled approach
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Search problem
Transformational grammars

= Pioneered by Noam Chomsky in the
’50s to model natural languages
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Search problem
Transformational grammars

= Pioneered by Noam Chomsky in the
’50s to model natural languages

= Formal grammars allow to
determine what novel sentences are
grammatical or not

= Transformational grammars are

sometimes called generative

grammars

= We look at non-probabilistic
grammars first!
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Search problem

Chomsky hierarchy of transformational grammars

unrestricted
context-sensitive

context-free

= Increasing order of expressivity, but also increasing
order of computational resources.
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Search problem

Chomsky hierarchy of transformational grammars

unrestricted
context-sensitive

context-free

= Increasing order of expressivity, but also increasing
order of computational resources.

= Each class of languages has its associated machine that
serves for parsing (accepting, deciding, recognizing)
sentences of this language.
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Search problem

Transformational grammars: definitions

Constituted of symbols and rewriting rules (also called
production rules) having the following form,

a— [
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Transformational grammars: definitions

Constituted of symbols and rewriting rules (also called
production rules) having the following form,

a— [

2 types of symbols: terminal symbols and non-terminal
symbols

The left-hand side of a rule contains at least one
non-terminal symbol, which is rewritten into the right
hand-side of the rule
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Search problem

Transformational grammars: definitions

Constituted of symbols and rewriting rules (also called
production rules) having the following form,

a— [

2 types of symbols: terminal symbols and non-terminal
symbols

The left-hand side of a rule contains at least one
non-terminal symbol, which is rewritten into the right
hand-side of the rule

Terminal symbols represents instances of the language,
here nucleotides, and will be represented by lower-case
letters
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Search problem

Transformational grammars: definitions

= Asmall example, a grammar denoted by G

S — gSl | CSz
S = ¢S | €
52 — gSl | €
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Search problem

Transformational grammars: definitions

A small example, a grammar denoted by G

S — gS]_ | CSz
S = ¢S | €
52 — gSl | €

A derivation is the successive application of the rules
starting with S (the start nonterminal).

S = ¢S5, = ¢gS; = cgcS, = cgcgS:, = cgcg
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Search problem

Transformational grammars: definitions

A small example, a grammar denoted by G

S — gS]_ | CSz
S = ¢S | €
52 — gSl | €

A derivation is the successive application of the rules
starting with S (the start nonterminal).

S = ¢S5, = ¢gS; = cgcS, = cgcgS:, = cgcg

The language generated by G, denoted £(G), is all the
strings that can be derived from S, {w|S = w}.

A string is accepted by the grammar if there exist a
derivation of the string from S.
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A derivation can be visualized
as a parse tree

Terminals are leaves and
non-terminals are internal
nodes

What was the input string?

Can you enumerate some of
the productions of the
grammar?




Search problem
Transformational grammars

= Asmall example

S — gSl | CSz
S]_ — CSZ | €
52 — gSl | €
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Search problem
Transformational grammars

= Asmall example

S — gSl | CSz
S]_ — CSZ | €
S — gSl | €

= Give examples of sentences accepted (generated) by the
grammar.
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Search problem
Transformational grammars

= Asmall example

S — gSl | CSz
S]_ — CSZ | €
S — gSl | €

= Give examples of sentences accepted (generated) by the
grammar.

= Which class of grammar is this?

Marcel Turcotte CS15126. Algorithms in bioinformatics



Search problem

Chomsky hierarchy of transformational grammars

Grammar type Decidability Productions
Regular

Context-free

Context-sensitive

Unrestricted
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Search problem

Chomsky hierarchy of transformational grammars

Grammar type Decidability Productions
Regular finite state automata

Context-free

Context-sensitive

Unrestricted
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Search problem

y of transformational grammars

Grammar type Decidability Productions
Regular finite state automata W — aW,W — a
Context-free

Context-sensitive

Unrestricted
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Search problem

y of transformational grammars

Grammar type Decidability Productions
Regular finite state automata W — aW,W — a
Context-free push-down automata

Context-sensitive

Unrestricted
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Grammar type Decidability Productions
Regular finite state automata W — aW,W — a
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Search problem

y of transformational grammars

Grammar type Decidability Productions
Regular finite state automata W — aW,W — a
Context-free push-down automata W — vy
Context-sensitive linear bounded automata

Unrestricted
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Search problem

y of transformational grammars

Grammar type Decidability Productions
Regular finite state automata W — aW,W — a
Context-free push-down automata W — vy

Context-sensitive linear bounded automata oW — ayg
Unrestricted
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Search problem

Chomsky hierarchy of transformational grammars

Grammar type Decidability Productions
Regular finite state automata W — aW,W — a
Context-free push-down automata W — vy
Context-sensitive linear bounded automata oW — ayg
Unrestricted Turing machines
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Search problem

Chomsky hierarchy of transformational grammars

Grammar type Decidability Productions
Regular finite state automata W — aW,W — a
Context-free push-down automata W — vy
Context-sensitive linear bounded automata oW — ayg
Unrestricted Turing machines a— B
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Search problem
Prosite

= N-glycosylationsiten-{p}-[st]-{p}
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Search problem
Prosite

= N-glycosylationsiten-{p}-[st]-{p}
So — nS;
Sl — GSZ|CSZ| R |y52
S, — $S3|t53
Sy —alc|...ly
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Search problem
Prosite

= N-glycosylationsiten-{p}-[st]-{p}
So — nS;
Sl — GSZ|CSZ| R |y52
S, — $S3|t53
Sy —alc|...ly
= What type of grammar is that?
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Search problem
Prosite

= N-glycosylationsiten-{p}-[st]-{p}
So — nS;
S; = aS,[cSy| - yS,
Sy — sS3]tSs
Sy —alc|...ly
= What type of grammar is that?
= www.expasy.ch/prosite
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Search problem
RNA secondary structure

= Write a grammar whose language consists of all the
sequences folding into either of the following two

stem-loop structures.

G A A G
A G G A
N-N’ N-N’
N-N’ N-N’
N-N’ N-N’
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Search problem
RNA secondary structure

= Write a grammar whose language consists of all the
sequences folding into either of the following two
stem-loop structures.

G A AG
A G G A

N-N’ N-N’

N-N’ N-N’

N-N’ N-N’
S - dAu | cAg | gAc | uAa
A — aBu | ¢cBg | gBc | uBa
B — aCu | cCg | gCc | uCa
C — agag | gaga
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Search problem
RNA secondary structure

= Write a grammar whose language consists of all the
sequences folding into either of the following two
stem-loop structures.

G A AG
A G G A

N-N’ N-N’

N-N’ N-N’

N-N’ N-N’
S - dAu | cAg | gAc | uAa
A — aBu | ¢cBg | gBc | uBa
B — aCu | cCg | gCc | uCa
C — agag | gaga

= What type of grammar is that?



Search problem

Cocke-Younger-Kasami (CYK) algorithm

= CYKis a widely used algorithm for the parsing of
context-free grammars (CFG)
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Search problem

Cocke-Younger-Kasami (CYK) algorithm

CYK is a widely used algorithm for the parsing of
context-free grammars (CFG)

The CFG must be first transformed into its
Chomsky normal form (CNF)

All the productions must be of the form:
* A — BC (exactly two nonterminals) or
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Search problem

Cocke-Younger-Kasami (CYK) algorithm

CYK is a widely used algorithm for the parsing of
context-free grammars (CFG)

The CFG must be first transformed into its
Chomsky normal form (CNF)
All the productions must be of the form:
* A — BC (exactly two nonterminals) or
* A — a(exactly one terminal)
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Search problem

Cocke-Younger-Kasami (CYK) algorithm

S =+ glc
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Search problem

Cocke-Younger-Kasami (CYK) algorithm

S -5 5
S—gTc S1 = ¢
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Cocke-Younger-Kasami (CYK) algorithm
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Write a CFG in CNF for the following stem-loop structure.

G A
A G

o
1
> CcC 0O
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Search problem

Cocke-Younger-Kasami (CYK) algorithm

Write a CFG in CNF for the following stem-loop structure.

G A
A G

o
1
> CcC 0O

S = §5
51 — u
S — 5354
S4s — a
S3 — S5S¢
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Search problem

Cocke-Younger-Kasami (CYK) algorithm

Write a CFG in CNF for the following stem-loop structure.

G A
A G
G-C
A-U
U-A
S = §5 55 — a
51 — u 56 — 5753
S — 5354 Sg — u
S4s — a S7 — S9S19
S3 — S586 S — g

Marcel Turcotte CS15126. Algorithms in bioinformatics



Search problem

Cocke-Younger-Kasami (CYK) algorithm

Write a CFG in CNF for the following stem-loop structure.

G A
A G
G-C
A-U
U-A
S — 5152 55 — a 510 — 511512 515 — g
51 — u 56 — 5753 512 — C 516 — 517518
Sy — S35, Sg — u S11 — S13S14 Si7 — a
S4s — a S7 — S9S19 Si3 > a S8 — g
S3 — S5S6 S9 = g S14 — S15516
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Search problem

Cocke-Younger-Kasami (CYK) algorithm: idea

* Fora given grammar G, let W = « indicate that the string
« can be derived from W of G

Marcel Turcotte CS15126. Algorithms in bioinformatics



Search problem

Cocke-Younger-Kasami (CYK) algorithm: idea

* Fora given grammar G, let W = « indicate that the string
« can be derived from W of G

= Also, let s be aninput string of length n

Marcel Turcotte CS15126. Algorithms in bioinformatics



Search problem

Cocke-Younger-Kasami (CYK) algorithm: idea

* Fora given grammar G, let W = « indicate that the string
« can be derived from W of G

= Also, let s be aninput string of length n
= Remember that G is in Chomsky Normal form!

Marcel Turcotte CS15126. Algorithms in bioinformatics



Search problem

Cocke-Younger-Kasami (CYK) algorithm: idea

* Fora given grammar G, let W = « indicate that the string
« can be derived from W of G

= Also, let s be an input string of length n
Remember that G is in Chomsky Normal form!
= Let V(i) = {W|W = sli,i+ [ — 1]}

Marcel Turcotte CS15126. Algorithms in bioinformatics



Search problem

Cocke-Younger-Kasami (CYK) algorithm: idea

* Fora given grammar G, let W = « indicate that the string
« can be derived from W of G

Also, let s be an input string of length n
Remember that G is in Chomsky Normal form!
Let V(i,[) = {W|W = s[i,i + [ — 1]}

For/=1

Marcel Turcotte CS15126. Algorithms in bioinformatics



Search problem

Cocke-Younger-Kasami (CYK) algorithm: idea

* Fora given grammar G, let W = « indicate that the string
« can be derived from W of G

Also, let s be an input string of length n
Remember that G is in Chomsky Normal form!
Let V(i,[) = {W|W = s[i,i + [ — 1]}

For/=1

Marcel Turcotte CS15126. Algorithms in bioinformatics



Search problem

Cocke-Younger-Kasami (CYK) algorithm: idea

* Fora given grammar G, let W = « indicate that the string
« can be derived from W of G

Also, let s be an input string of length n
Remember that G is in Chomsky Normal form!
Let V(i,[) = {W|W = s[i,i + [ — 1]}

For/=1

Vi 1) =
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Search problem

Cocke-Younger-Kasami (CYK) algorithm: idea

* Fora given grammar G, let W = « indicate that the string
« can be derived from W of G

Also, let s be an input string of length n
Remember that G is in Chomsky Normal form!
Let V(i,[) = {W|W = s[i,i + [ — 1]}

For/=1

V(i,1) = { W|W — sli,i] }
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Also, let s be an input string of length n
Remember that G is in Chomsky Normal form!
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Search problem

Cocke-Younger-Kasami (CYK) algorithm: idea

* Fora given grammar G, let W = « indicate that the string
« can be derived from W of G

Also, let s be an input string of length n
Remember that G is in Chomsky Normal form!
Let V(i,[) = {W|W = s[i,i + [ — 1]}

For/=1

V(i,1) = { W|W — sli,i] }

= For/[>1

v(iil)= {A| A— BC,
B = sli,i+k— 1],
C=s[i+ki+l—1]
1<k<l}
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Search problem

Cocke-Younger-Kasami (CYK) algorithm: example

S - AB | BC
A BA i .o .
B : cc ; Z V(i,l) = {W|\W = s[i,i + [ - 1]}
C - AB | a
[ s[[ b [ a [ a]b[]al]
i 1 2 3 4 5
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Cocke-Younger-Kasami (CYK) algorithm: example

S - AB | BC
A BA i .o .
B : cc ; Z V(i,l) = {W|\W = s[i,i + [ - 1]}
C - AB | a

[ s[[ b [ a [ a]b[]al]

1 2 3 4 5
[ 1 B A’C A’C B A,C
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Cocke-Younger-Kasami (CYK) algorithm: example

S - AB | BC
A BA i .o .
B : cc ; Z V(i,l) = {W|\W = s[i,i + [ - 1]}
C - AB | a

[ s[[ b [ a [ a]b[]al]
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Cocke-Younger-Kasami (CYK) algorithm: example

S - AB | BC
A BA i .o .
B : cc ; Z V(i,l) = {W|\W = s[i,i + [ - 1]}
C - AB | a

[ s[[ b [ a [ a]b[]al]

1 2 3 4 5
[=1] B | AC |AC | B |AC
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Cocke-Younger-Kasami (CYK) algorithm: example

S —- AB | BC
A — BA | a . L
B — CC | b V(i,l) = {W|W = sli,i+[— 1]}
C - AB | a

[ <[ ® [ s [ a5k [s]

1 2 3 4 5
[ l B A’C A’C B A7C
[_2 S7A B S,C
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Search problem

Cocke-Younger-Kasami (CYK) algorithm: example

S — AB | BC
A — BA | a . 5
B - cc | b V(i,l) = {W|\W = s[i,i+ [ — 1]}
C - AB | a

| s[ b [ a [ a [ b [a]

2 3 4 5
[=1 B AC | AC B | AC
[=21 S,A B S,C | S,A
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Search problem

Cocke-Younger-Kasami (CYK) algorithm: example

S —- AB | BC
A — BA | a . L
B — CC | b V(i,l) = {W|W = sli,i+[— 1]}
C - AB | a
[ <[ ® [ s [ a5k [s]
[ l B A’C A’C B A7C
[—2 S7A B S’C S,A
[=3
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Cocke-Younger-Kasami (CYK) algorithm: example

S —- AB | BC
A — BA | a . L
B — CC | b V(i,l) = {W|W = sli,i+[— 1]}
C - AB | a
[ s[[ b [ a [ a]b[]al]
[ l B A’C A’C B A7C
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S —- AB | BC
A — BA | a . L
B — CC | b V(i,l) = {W|W = sli,i+[— 1]}
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Cocke-Younger-Kasami (CYK) algorithm: example

S —- AB | BC
A — BA | a . L
B — CC | b V(i,l) = {W|W = sli,i+[— 1]}
C - AB | a
[ s[[ b [ a [ a]b[]al]
[ l B A’C A’C B A7C
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Cocke-Younger-Kasami (CYK) algorithm: example

S —- AB | BC
A — BA | a . L
B — CC | b V(i,l) = {W|W = sli,i+[— 1]}
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Cocke-Younger-Kasami (CYK) algorithm: example

S —- AB | BC
A — BA | a . L
B — CC | b V(i,l) = {W|W = sli,i+[— 1]}
C - AB | a
[ <[ ® [ s [ a5k [s]
[ l B A’C A’C B A7C
[—2 S7A B S’C S,A
[=3 0 B B
I:4 @ S,A,C
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Search problem

Cocke-Younger-Kasami (CYK) algorithm: example

S —- AB | BC
A — BA | a . L
B — CC | b V(i,l) = {W|W = sli,i+[— 1]}
C - AB | a
[ s[[ b [ a [ a]b[]al]
1 2 3 4 5

[ = B A C AC B A, C

[=2]] SA | B |SC|SA

[ = 0 B 5

[=4 @ S,A,C

| =
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Search problem

Cocke-Younger-Kasami (CYK) algorithm: example

S — AB | BC
5 el V(i 1) = {WW 5 sfi, i +1— 1]}
C - AB | a

[ s[ b T a [a[b[a]

i 1 2 3 4 5

= B AC |ACc | B |AcC

=2 S.A B | S.C|S.A

(=3 0 | B | B

[=4| 0 |SAC

=5 SAC
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Search problem

Cocke-Younger-Kasami (CYK) algorithm: algorithm

{ Initialization }

for i = 1 to n do
V(i,1) = {fA| A — a is a production and s[i] = a}

{ Iteration }

for 1 = 2 to n do
for i =1 ton-1+1do
V(-ial) =0
for k =1 tol -1 do
V(@i,l) = v@E,l) U
{A| A — BC,
B € V(i,k) and
C € V(i+k,1-k)}
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Search problem

Cocke-Younger-Kasami (CYK) algorithm: algorithm

{ Initialization }

for i = 1 to n do
V(i,1) = {fA| A — a is a production and s[i] = a}

{ Iteration }

for 1 = 2 to n do
for i =1ton-1+1do
V(-ial) =0
for k =1 to 1 -1 do
V(i,1) = V(i,l) U
{A| A — BC,
B € V(i,k) and
C € V(@i+k,1-k)}
Given an input of size n and grammar having m nonterminal
symbols, CYK runs in O(mn?) space and O(m?n?) time.
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Search problem

Cocke-Younger-Kasami (CYK) algorithm: remarks

An RNA secondary structure (motif) can be represented
as a CFG (in CNF)
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as a CFG (in CNF)

CYK can be used for finding all its occurrences in a
database

CYK finds an exact match
Still hit-or-miss algorithm
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Search problem

Cocke-Younger-Kasami (CYK) algorithm: remarks

An RNA secondary structure (motif) can be represented
as a CFG (in CNF)

CYK can be used for finding all its occurrences in a
database

CYK finds an exact match
Still hit-or-miss algorithm

Gene Myers adapted the algorithm for finding
approximate matches
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Search problem
Discussion

ACCU
ACUU
ACCU
G CCC
( )
AU UU
ACCU
G CUC
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Search problem
Discussion

ACCU
ACUU
ACCU
G CCC
( )
AU UU
ACCU
G CUC

= AUUU is not accepted

= ACCU and GCUC are both accepted, but one is the
consensus and the other the exception
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Search problem

Stochastic (Context-Free) grammars

Because of their discrete nature, it’s difficult to design
patterns that 1) are specific enough 2) and yet will be
general enough to match unseen cases
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patterns that 1) are specific enough 2) and yet will be
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Search problem

Stochastic (Context-Free) grammars

Because of their discrete nature, it’s difficult to design
patterns that 1) are specific enough 2) and yet will be
general enough to match unseen cases

Any grammar in the Chomsky hierarchy can be
transformed into a probabilistic model

In practice, because the cost of parsing a string (sequence
or database) using context-sensitive and unrestricted
grammars is prohibitive, applications are restricted to
regular and context-free grammars
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Search problem
Stochastic grammars

A stochastic context-free grammar (SCFG) for an RNA will have
production rules of the following forms:

So—(.25): gS1¢c|(.25): ¢cS1g|(.25): aS1u|(.25): uS;a
to represent base-pairs, and
Si—(.50): uS;[(.50): g§;

to represent single stranded regions.
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Search problem
Stochastic grammars: problems

= Given a sequence finding the most likely parse
(alignment)
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Search problem
Stochastic grammars: problems

= Given a sequence finding the most likely parse
(alignment)

= Probability that this SCFG produces that sequence
(scoring)
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Search problem
Stochastic grammars: problems

= Given a sequence finding the most likely parse
(alignment)

= Probability that this SCFG produces that sequence
(scoring)

= Estimating the probabilities of the model (training)
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Search problem
Notation

= Given an SCFG in Chomsky normal form with M
nonterminal symbols, W = Wi, .., W,, and W, the start
symbol
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Search problem
Notation

= Given an SCFG in Chomsky normal form with M
nonterminal symbols, W = Wi, .., W,, and W, the start
symbol

= Letv, wand zdenote the indices for the nonterminal
symbols, W,, W, and W,

= Production rules are of the form:

w, — W,W,and W, — a
= Let the probability parameters be called,

t(y,2)

for transitions and
e.(a)
for emissions
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Search problem
Notation

= Given an SCFG in Chomsky normal form with M
nonterminal symbols, W = Wi, .., W,, and W, the start
symbol

= Letv, wand zdenote the indices for the nonterminal
symbols, W,, W, and W,

= Production rules are of the form:

w, — W,W,and W, — a
= Let the probability parameters be called,
tV(y7 Z)

for transitions and
ev/(a)
for emissions
= Finally, leti,jand k be the indices for the symbols x;, x;
and x, in the sequence x of length n
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Search problem

CYK algorithm (alignment)

{ Initialization }

for i=1 ton, v=1 to M
’Y(ﬂl,V) = eV(Xi)

{ Iteration }

for [=2 ton, i=1 ton—-I+1, v=1 to M
’Y(i,[,V) = maXy,, MaXy=1,..,I-1 {7(i7kyy)'}/(i+k717kvz)tV(yaZ)}

{ Termination }

log P(x,7|0) = ~(1,n,1).
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Search problem

Cocke-Younger-Kasami (CYK) algorithm:

non-probabilistic

{ Initialization }

for i =1 to n do
V(i,1) = {A| A — a is a production and s[i] = a}

{ Iteration }

for 1 = 2 to n do
for i =1ton-1+1do
V(@i,l) =0
for k =1 to 1l -1 do
V(@i,l) = v(@E,l) U
{A|A —- BC, B € V(i,k) and C € V(i+k
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Search problem

CYK algorithm: probabilistic

{ Initialization }

for i=1 ton, v=1to M
Y(i,Lv) = log ev(x)

{ Iteration }

for [=2 ton, i=1ton—I[+1, v=1 to M
V(i j,v) = maxy, maxe=y -1 {0k y)+y(itk [=k z)+log t.(y,2)}

{ Termination }

log P(x,7|0) = ~(1,n,1).

Marcel Turcotte CS15126. Algorithms in bioinformatics



Search problem
Complexity

Memory O(L?M)
Time O(L3M3)
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Search problem

CYK algorithm: inside (scoring)

{ Initialization }

for i=1 ton, v=1 to M
a(i,1,v) = e(x)

{ Iteration }

for [=2 ton, i=1 ton—-I[4+1, v=1 to M

ceey

{ Termination }

log P(x]0) = «a(1,n,1).
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Search problem

Estimating the probabilities

The transition and emission probabilities are estimated from the
user input data (alignment and structure).

= Intheory:

= Theinside-outside, an iterative
expectation-maximization (EM), algorithm can be used
for parameter re-estimation

= In practice:

* Parameters are extracted from a user input alignment

Marcel Turcotte CS15126. Algorithms in bioinformatics



Search problem

Expectation-Maximization (EM)

Iterative algorithm for finding the maximum-likelihood estimates
of the parameters.

I unaligned sequences ]

random

alignment
w
multiple alignment (EM) covariance model '

parameter
reestimation

model construction
(structure prediction)

Marcel Turcotte CS15126. Algorithms in bioinformatics
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Search problem

tRNA: a more realistic input

# STOCKHOLM 1.0
Koala

#=GF AU

DA0260
#=GR DA0260
DA0261
#=GR DA0261
DA0340
#=GR DA0340
DA0G380
#=GR DA0380
DA0420
#=GR DA0420
DA0G580
#=GR DA0580
DA0620
#=GR DA0620

GGGCGAAUAGUGUCAGC . GGGAGCACACCAGACUUGCAUCUGGUAG . GGAGGGUUCGAGUCCCUCUUUGUCCAC
CCCCCCCe e CCCCaennnnn 1)) (e I e e )))))))))))) .

GGGCGAAUAGUGUCAGC . GGGAGCACACCAGACUUGCAUCUGGUAG . GGAGGGUUCGAGUCCCUCUUUGUCCAC
CCOCCC - (O 1)) (CCCCannnn IN)) e e 1))))))))))) -

GGGCUCGUAGCUCAGC . . GGGAGAGCGCCGCCUUUGCAGGCGGAGGCCGCGGGUUCAAAUCCCGCCGAGUCCA.
CCCCCCC . CCCCenannnnn ) (e I eennn (CCCCaannnns )))))))))))) .

GGGCCCAUAGCUCAGU . . GGUAGAGUGCCUCCUUUGCAGGAGGAUGCCCUGGGUUCGAAUCCCAGUGGGUCCA.
CCCCCCC . CCCCenannnnn 1)) (CCCCennnn ). (G )))))))))))) .

GGGCCCAUAGCUCAGU . . GGUAGAGUGCCUCCUUUGCAGGAGGAUGCCCUGGGUUGGAAUCCCAGUGGGUCCA.
CCCCCCC - (0w 1)) (e I (G 1))))))))))) .-
GGGCCCGUAGCUCAGACUGGGAGAGCGCCGCCCUUGCAGGCGGAGGCCCCGGGUUCAAAUCCCGGUGGGUCCA.
CCCCCCC - CCCCenenannn 1)) (e I (CCCCennnnn )))))))))) ..
GGGCCCGUAGCUCAGACUGGGAGAGCGCCGCCCUUGCAGGCGGAGGCCCCGGGUUCAAAUCCCGGUGGGUCCA.
CCCCCCa CCCCaaannn 1)) (CCCCennnn I (s 1))))))))))) .-
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Search problem

Stochastic Context-Free Grammars (SCFG)

Sean Eddy, one of the pioneers of the use of SCFGs in
bioinformatics, has developed several tools:
http://eddylab.org/software.html

RSEARCH aligns an RNA query to target sequences, using
SCFG algorithms to score both secondary structure and
primary sequence alignment simultaneously;

Infernal. RNA structure analysis using covariance models
(new);

COVE. RNA structure analysis using covariance models
(old).

Marcel Turcotte CS15126. Algorithms in bioinformatics


http://eddylab.org/software.html

Search problem

RSearch

= Input: an RNA sequence and its secondary structure
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Search problem
RSearch

= Input: an RNA sequence and its secondary structure

= Output: similar RNAs on the basis of both primary
sequence and secondary structure

Marcel Turcotte CS15126. Algorithms in bioinformatics



Search problem
RSearch

= Input: an RNA sequence and its secondary structure
= Output: similar RNAs on the basis of both primary
sequence and secondary structure

= R.J.Klein and S.R. Eddy (2003) RSEARCH: Finding
homologs of single structured RNA sequences. BMC
Bioinformatics, 4:44,2003 (d0i:10.1186/1471-2105-4-44)

Marcel Turcotte CS15126. Algorithms in bioinformatics



Search problem

# STOCKHOLM 1.0
#=GS Holley DE tRNA-Ala that Holley sequenced from Yeast genome
Holley
GGGCGTGTGGCGTAGTCGGTAGCGCGCTCCCTTAGCATGGGAGAGGtCTCCGGTTCGATTCCGGACTCGTCCA
#=GR Holley SS
COCCC G (G 2 CCCCCe e NI eenn CCCCCeeennn 1)))))))))) -
/1
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Search problem
Remarks

= RIBOSUM substitution matrices (analogous to residue
substitution scores such as PAM and BLOSUM but for
base pairs)
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Search problem
Remarks

= RIBOSUM substitution matrices (analogous to residue
substitution scores such as PAM and BLOSUM but for
base pairs)

= Reports the statistical significance of all the matches
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Search problem
Remarks

RIBOSUM substitution matrices (analogous to residue
substitution scores such as PAM and BLOSUM but for
base pairs)

Reports the statistical significance of all the matches

Execution time is O(NM?) where N is the size of the
database and M is the length of the input sequence
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Search problem
Remarks

RIBOSUM substitution matrices (analogous to residue
substitution scores such as PAM and BLOSUM but for
base pairs)

Reports the statistical significance of all the matches
Execution time is O(NM?) where N is the size of the
database and M is the length of the input sequence

“(...) a typical single search of a metazoan genome may
take a few thousand CPU hours.”
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Search problem
INFERNAL

= INFERNAL 1.1
Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster
RNA homology searches. Bioinformatics 29, 2933-2935
(2013).

= Rfam 14 (August 2018, 2791 families, hand curated)

= Kalvari, I. et al. Rfam 13.0: shifting to a genome-centric
resource for non-coding RNA families. Nucleic Acids Res
46, D335-D342 (2018).
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Search problem
INFERNAL/Rfam covariance models
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Search problem
INFERNAL/Rfam covariance models

# STOCKHOLM 1.0 S

#=GC SS_cons <<<<,.>>>> =

seql GGAGAUCUCC

seq2 GGGGAUCCCC @ |:>
seq3 UGGGAACCCA

seq4 GGGGAUCCCU

seq5 GGGGAACCCC

!/
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Search problem
Summary

= Hard consensus patterns are difficult to design
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Search problem
Summary

= Hard consensus patterns are difficult to design

= SCFGs are powerful but slow
(thousands of hours for scanning a bacterial genome)
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Search problem
Summary

= Hard consensus patterns are difficult to design

= SCFGs are powerful but slow
(thousands of hours for scanning a bacterial genome)

= Specialised programs have been developed, each
recognising a specific structure; these programs are
generally sensitive, specific and (relatively) fast:
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Search problem
Summary

= Hard consensus patterns are difficult to design

= SCFGs are powerful but slow
(thousands of hours for scanning a bacterial genome)

= Specialised programs have been developed, each
recognising a specific structure; these programs are
generally sensitive, specific and (relatively) fast:
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Search problem
Summary

Hard consensus patterns are difficult to design

SCFGs are powerful but slow
(thousands of hours for scanning a bacterial genome)

Specialised programs have been developed, each
recognising a specific structure; these programs are
generally sensitive, specific and (relatively) fast:

* tRNAscan-SE (by Sean Eddy)
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Search problem
Summary

Hard consensus patterns are difficult to design
SCFGs are powerful but slow
(thousands of hours for scanning a bacterial genome)

Specialised programs have been developed, each
recognising a specific structure; these programs are
generally sensitive, specific and (relatively) fast:

* tRNAscan-SE (by Sean Eddy)

* detects 99% of the known tRNAs
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Search problem
Summary

Hard consensus patterns are difficult to design

SCFGs are powerful but slow
(thousands of hours for scanning a bacterial genome)

Specialised programs have been developed, each
recognising a specific structure; these programs are
generally sensitive, specific and (relatively) fast:
* tRNAscan-SE (by Sean Eddy)
* detects 99% of the known tRNAs
* with an error rate of 1 false positive per 15 billion
nucleotides
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Search problem
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Search problem
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Search problem
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Search problem

Pensez-y!

Limpression de ces notes n’est probablement pas nécessaire!
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