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Unsupervised Learning

In this lecture, we consider several aspects of unsupervised learning. This is
important since most available examples are unlabelled. This is considered to be
essential for artificial general intelligence (AGI). Transcriptomics is an area that
benefits from unsupervised learning. We consider various clustering algorithms as well
as the concepts behind dimensionality reduction.

General objective :
Describe the main concepts and algorithms of unsupervised learning



Learning objectives
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Explain in your own words what unsupervised learning is
Discuss the problem of determining the optimal number of clusters
Describe the main algorithms seen in class as well as their limitation
Present the main concepts behind dimensionality reduction

Reading:
G Kerr, H J Ruskin, M Crane, and P Doolan. Techniques for clustering gene
expression data. Comput Biol Med, 38(3):28393, Mar 2008.
Jelili Oyelade, Itunuoluwa Isewon, Funke Oladipupo, Olufemi Aromolaran,
Efosa Uwoghiren, Faridah Ameh, Moses Achas, and Ezekiel Adebiyi.
Clustering algorithms: Their application to gene expression data. Bioinform
Biol Insights 10:237253, 2016.



Applied textbook
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Ankur A. Patel. Hands-On Unsupervised Learning Using Python. OReilly
Media, 2019.
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1. Preamble

2. Introduction

3. Problem

4. Problems

5. Clustering

6. Dimensionality reduction

7. Prologue



Unsupervised Learning - Andrew Ng
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https://youtu.be/jAA2g9ItoAc

https://youtu.be/jAA2g9ItoAc


Yann Lecun, AI Scientist, Facebook
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“If intelligence is a cake, the bulk of the
cake is unsupervised learning, the icing
on the cake is supervised learning, and
the cherry on the cake is reinforcement
learning.”

Source: NIPS 2016 - https://www.youtube.com/watch?v=Ount2Y4qxQo&t=1072s

https://www.youtube.com/watch?v=Ount2Y4qxQo&t=1072s
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Introduction



Unsupervised learning
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The data set is a collection of unlabelled examples.

{(xi)}N
i=1

Each xi is a feature (attribute) vector with D dimensions.
x (j)

i is the value of the feature j of the example i , for j ∈ 1 . . . D and
i ∈ 1 . . . N.

Problem: find the underlying “structure” of the data.

The problem is vaguely defined compared to supervised learning.
Likewise, measuring performance will also be problematic.
However, the framework is very flexible.
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Transcriptomics technologies
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Several high-throughput technologies exist to measure the expression levels of
(RNA) transcripts.

Expressed Sequence Tag (EST)
Serial and cap analysis of gene
expression (SAGE/CAGE)
DNA Microarrays (GeneChips)
RNA-Seq

Lowe, R., Shirley, N., Bleackley, M., Dolan, S. & Shafee, T. Transcriptomics
technologies. PLoS Comput Biol 13, (2017).
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DNA Microarrays
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Lowe, R., Shirley, N., Bleackley, M., Dolan, S. & Shafee, T. Transcriptomics technologies. PLoS
Comput Biol 13, (2017).



DNA Microarrays
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https://youtu.be/yzBVOCwRanI

https://youtu.be/yzBVOCwRanI


RNA-Seq
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Lowe, R., Shirley, N., Bleackley, M., Dolan, S. & Shafee, T. Transcriptomics technologies. PLoS
Comput Biol 13, (2017).



Data
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{(xi)}N
i=1

Each xi represents the expression of a given gene under different
conditions, individuals/tissues/cell types - a feature vector with D
dimensions.
x (j)

i is the value of the feature j of the example i , for j ∈ 1 . . . D and
i ∈ 1 . . . N. This is the expression level of gene i for samples j .



Data (alternative interpretation)
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{(xi)}N
i=1

Each xi represents the expression of D genes for given condition - a
feature vector with D dimensions.
x (j)

i is the value of the feature j of the example i , for j ∈ 1 . . . D and
i ∈ 1 . . . N. This is the expression level of gene j for sample i .

Michael Molla, Michael Waddell, David Page, and Jude W. Shavlik. Using
machine learning to design and interpret gene-expression microarrays. AI
Magazine, 25(1):2344, 2004.



Gene expression profiling
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Source: https://upload.wikimedia.org/wikipedia/commons/4/48/Heatmap.png

https://upload.wikimedia.org/wikipedia/commons/4/48/Heatmap.png


Gene expression profiling
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Source: https://en.wikipedia.org/wiki/Transcriptomics_technologie

https://en.wikipedia.org/wiki/Transcriptomics_technologie


Gene expression profiling - applications
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Identifying the unknown function of genes - guilt by association
Diagnostics and disease profiling
Human and pathogen transcriptomes
Responses to environment



Transcriptomic databases
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Lowe, R., Shirley, N., Bleackley, M., Dolan, S. & Shafee, T. Transcriptomics technologies. PLoS
Comput Biol 13, (2017).



Problems 22/92

Problems



Unsupervised learning - problems
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Dimensionality reduction
Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor
Embedding (t-SNE)

Clustering
K-Means, DBSCAN, hierarchical

Anomaly detection
One-class SVM



Unsupervised learning - problems
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Later, we will consider unsupervised learning methods based on deep
learning, namely the auto-encoders.
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Clustering



What is a cluster?
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Source: [1] Figure 9.2
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Source: [1] Figure 9.11
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Source: [1] Figure 9.14
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The definition of a cluster might depend on the application.

Round, elongated, complex.
The algorithms have their own bias and limitations.

Producing spherical clusters.
Looking for densely packed and contiguous regions.

It is important to match the right algorithm with the right problem.
Hard vs. soft clusters:

For some algorithms/applications, each element is assigned to one and only
one cluster, this is called hard clustering.
The alternative is to estimate the probability that a given example belongs
to a given cluster, this is called soft clustering.



What is a cluster?

Clustering 29/92

The definition of a cluster might depend on the application.
Round, elongated, complex.

The algorithms have their own bias and limitations.

Producing spherical clusters.
Looking for densely packed and contiguous regions.

It is important to match the right algorithm with the right problem.
Hard vs. soft clusters:

For some algorithms/applications, each element is assigned to one and only
one cluster, this is called hard clustering.
The alternative is to estimate the probability that a given example belongs
to a given cluster, this is called soft clustering.



What is a cluster?

Clustering 29/92

The definition of a cluster might depend on the application.
Round, elongated, complex.

The algorithms have their own bias and limitations.

Producing spherical clusters.
Looking for densely packed and contiguous regions.

It is important to match the right algorithm with the right problem.
Hard vs. soft clusters:

For some algorithms/applications, each element is assigned to one and only
one cluster, this is called hard clustering.
The alternative is to estimate the probability that a given example belongs
to a given cluster, this is called soft clustering.



What is a cluster?

Clustering 29/92

The definition of a cluster might depend on the application.
Round, elongated, complex.

The algorithms have their own bias and limitations.
Producing spherical clusters.

Looking for densely packed and contiguous regions.
It is important to match the right algorithm with the right problem.
Hard vs. soft clusters:

For some algorithms/applications, each element is assigned to one and only
one cluster, this is called hard clustering.
The alternative is to estimate the probability that a given example belongs
to a given cluster, this is called soft clustering.



What is a cluster?

Clustering 29/92

The definition of a cluster might depend on the application.
Round, elongated, complex.

The algorithms have their own bias and limitations.
Producing spherical clusters.
Looking for densely packed and contiguous regions.

It is important to match the right algorithm with the right problem.
Hard vs. soft clusters:

For some algorithms/applications, each element is assigned to one and only
one cluster, this is called hard clustering.
The alternative is to estimate the probability that a given example belongs
to a given cluster, this is called soft clustering.



What is a cluster?

Clustering 29/92

The definition of a cluster might depend on the application.
Round, elongated, complex.

The algorithms have their own bias and limitations.
Producing spherical clusters.
Looking for densely packed and contiguous regions.

It is important to match the right algorithm with the right problem.

Hard vs. soft clusters:

For some algorithms/applications, each element is assigned to one and only
one cluster, this is called hard clustering.
The alternative is to estimate the probability that a given example belongs
to a given cluster, this is called soft clustering.



What is a cluster?

Clustering 29/92

The definition of a cluster might depend on the application.
Round, elongated, complex.

The algorithms have their own bias and limitations.
Producing spherical clusters.
Looking for densely packed and contiguous regions.

It is important to match the right algorithm with the right problem.
Hard vs. soft clusters:

For some algorithms/applications, each element is assigned to one and only
one cluster, this is called hard clustering.
The alternative is to estimate the probability that a given example belongs
to a given cluster, this is called soft clustering.



What is a cluster?

Clustering 29/92

The definition of a cluster might depend on the application.
Round, elongated, complex.

The algorithms have their own bias and limitations.
Producing spherical clusters.
Looking for densely packed and contiguous regions.

It is important to match the right algorithm with the right problem.
Hard vs. soft clusters:

For some algorithms/applications, each element is assigned to one and only
one cluster, this is called hard clustering.

The alternative is to estimate the probability that a given example belongs
to a given cluster, this is called soft clustering.



What is a cluster?

Clustering 29/92

The definition of a cluster might depend on the application.
Round, elongated, complex.

The algorithms have their own bias and limitations.
Producing spherical clusters.
Looking for densely packed and contiguous regions.

It is important to match the right algorithm with the right problem.
Hard vs. soft clusters:

For some algorithms/applications, each element is assigned to one and only
one cluster, this is called hard clustering.
The alternative is to estimate the probability that a given example belongs
to a given cluster, this is called soft clustering.



sklearn.cluster.KMeans
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By now, you are familiar with KMeans.

from s k l e a r n . c l u s t e r import KMeans

kmeans = KMeans ( n _ c l u s t e r s =5)
y_pred = kmeans . f i t _ p r e d i c t (X)

>>> y_pred
array([4, 0, 1, ..., 2, 1, 0], dtype=int32)

KMeans has one mandatory hyperparameter, K, the number of clusters.
Determining the number of clusters is one of the main challenges for
clustering.



sklearn.cluster.KMeans
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>>> kmeans.cluster_centers_
array([[-2.80389616, 1.80117999],

[ 0.20876306, 2.25551336],
[-2.79290307, 2.79641063],
[-1.46679593, 2.28585348],
[-2.80037642, 1.30082566]])

>>> X_new = np.array([[0, 2], [3, 2], [-3, 3], [-3, 2.5]])

>>> kmeans.predict(X_new)
array([1, 1, 2, 2], dtype=int32)

Source: [1] §9



Algorithm - KMeans
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1. Randomly select K examples — these are the initial K centroids

2. For each example:

2.1 Calculate the distance between this example and all k centroids.
2.2 Find the centroid with minimum distance to this example.
2.3 Assign the label of that centroid to this example.

3. For each cluster:

3.1 Update the centroid.

4. If the centroids have moved, repeat from 2, else stop.

The algorithm is guaranteed to converge (to stop in finite [small] number of steps).
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Source: [1] Figure 9.4
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What shape of clusters would KMeans produce?

Would you expect the solution to be the same at every run?
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Local optima
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Source: [1] Figure 9.5

Solutions

Run KMeans multiple times, n_init=10.
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Objective function - inertia
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N∑
i=1

min
µj ∈C

(||xi − µj ||2) (1)

For a fixed K , run KMeans multiple times, n_init=10, select the solution
minimizing inertia (distortion).



KMeans++
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KMeans++ was introduced in 2006.
Selects the initial centroids in a way that all the centroids are as far as
possible one from another.
Default initialization method with Scikit-Learn.



Finding the optimal number of clusters
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Source: [1] Figure 9.8

Inertia cannot be used as a criterion to find the optimal number of clusters
since the more clusters there are, the closer each instance will be to
the centroid of its cluster — think about the case where K = N .



Finding the optimal number of clusters
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Let i be an example and Ci its cluster, a(i) is the mean intra-cluster distance:

a(i) = 1
|Ci | − 1

∑
j∈Ci ,j ̸=j

d(i , j) (2)

Let i be an example and Ci its cluster, b(i) is the mean distance to examples from the
closest cluster (different that Ci):

b(i) = min
k ̸=i

1
|Ck |

∑
j∈Ck

d(i , j) (3)

The silhouette coefficient of example i , s(i) is:

s(i) = b(i) − a(i)
max(a(i), b(i)) , if |Ci | > 1, s(i) = 0, if |Ci | = 1 (4)

The silhouette score is the mean value of s(i), for all i .
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Source: [1] Figure 9.9

The value of K maximizing the silhouette score is a “good indication” of
the optimal number of clusters.



Hierarchical clustering
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Hierarchical clustering is sometimes called UPGMA (Unweighted Pair
Group Method using Arithmetic) in bioinformatics.

from s c i p y . c l u s t e r . h i e r a r c h y import dendrogram , l i n k a g e

l i n k e d = l i n k a g e (X, ’ s i n g l e ’ )
dendrogram ( l i n k e d , o r i e n t a t i o n=’ l e f t ’ , l a b e l s=names )



Dendrogram
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a b c d e

a

b

c

d

e

0

0

0

0

0

b c eda
d

a b

c
e
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Algorithm - hierarchical clustering
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e

b c eda
d

a b

c
e

{a,b}

dc{a,b}

c

d

e

0

0

0

0

21 31 21.5

11 16

18

d{ab},e = (dae + dbe)/2 = (25 + 18)/2



Algorithm - hierarchical clustering
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e

b c eda
d

a b

c
e

{a,b}

{a,b}

0

{c,d}

{c,d}

0

e

26 21.5

17

0

d{ab},{cd} = (dac + dad + dbc + dbd)/4 = (21 + 32 + 21 + 30)/4



Algorithm - hierarchical clustering
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b c eda
d

a b

c
e

{a,b}

{a,b}

0

0

{c,d,e}

{c,d,e}

24.5

d{ab},{cde} = (dac + dad + dae + dbc + dbd + dbd)/6
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b c eda
d

a b

c
e

{a,b,c,d,e}

{a,b,c,d,e} 0



UPGMA - distance measures
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Average distance (produces clusters with same variance):

dij = 1
|Ci ||Cj |

∑
p∈Ci ,q∈Cj

dpq

Complete linkage (produces compact clusters):

dij = max
p∈Ci ,q∈Cj

dpq

Single linkage (picks up elongated/irregular clusters):

dij = min
p∈Ci ,q∈Cj

dpq



DBSCAN
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from s k l e a r n . c l u s t e r import DBSCAN

dbscan = DBSCAN( eps =0.05 , min_samples=5)
dbscan . f i t (X)

Algorithm:

1. For each example:

1.1 Count how many examples are located at a distance ϵ is less — this the
ϵ-neighbourhood.

1.2 If the count is min_samples or more, then this example is core.
2. Let all the examples in the ϵ-neighbourhood of a core be part of the same

cluster.
3. Any example that is not a core example and does not have a core

example in its ϵ-neighbourhood is an anomaly.
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The hyperparameter epsilon
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Source: [1] Figure 9.14

Pros: simple, detects clusters with complex shapes, robust to outliers.
Cons: challenged if the clusters have widely diverse density.
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Gaussian mixture model, density estimation
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In 2020, present Gaussian mixture model as well as density estimation.



Resources (videos)
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Lectures on Machine Learning by Andrew Ng - specifically, the lectures on
unsupervised learning and clustering.

1. Introduction (3 m 17 s)
2. KMeans algorithm (12 m 32 s)
3. Clustering objective function (7 m 4 s)
4. Clustering random initialization (7 m 50 s)
5. Choosing the number of clusters (8 m 22 s)

https://www.coursera.org/learn/machine-learning
https://www.andrewng.org
https://youtu.be/Ev8YbxPu_bQ
https://youtu.be/hDmNF9JG3lo
https://youtu.be/LvgcfMOyREE
https://youtu.be/PpH_hv55GNQ
https://youtu.be/lbR5br5yvrY
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Dimensionality reduction



Gene expression profiling
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Source: https://en.wikipedia.org/wiki/Transcriptomics_technologie

https://en.wikipedia.org/wiki/Transcriptomics_technologie


Expression data
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{(xi)}N
i=1

Each xi represents the expression of a given gene under different
conditions, individuals/tissues/cell types - a feature vector with D
dimensions.
x (j)

i is the value of the feature j of the example i , for j ∈ 1 . . . D and
i ∈ 1 . . . N. This is the expression level of gene i for samples j .



Expression data (alternative interpretation)
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{(xi)}N
i=1

Each xi represents the expression of D genes for a given condition - a
feature vector with D dimensions.
x (j)

i is the value of the feature j of the example i , for j ∈ 1 . . . D and
i ∈ 1 . . . N. This is the expression level of gene j for sample i .

Michael Molla, Michael Waddell, David Page, and Jude W. Shavlik. Using
machine learning to design and interpret gene-expression microarrays. AI
Magazine, 25(1):2344, 2004.



Segmentation of budding yeast cells
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Imagine designing a software system to label and track live-cells in
bright-field microscopy images.
A classifier must be trained to label these images.
Assuming that each image is 512 by 512 pixels, this means a total 262,144
pixels or features!

See:

Versari, C. et al. Long-term tracking of budding yeast cells in brightfield
microscopy: CellStar and the Evaluation Platform. Journal of The Royal
Society Interface 14:127, (2017).
https://github.com/kaernlab/YeastNet

https://github.com/kaernlab/YeastNet


Curse of dimensionality
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Consider features with m discrete values, the volume of the input space
grows as mD!

“Because of “the curse of dimensionality,” many statistical methods lack
power when applied to high-dimensional data. Even if the number of
collected data points is large, they remain sparsely submerged in a
voluminous high-dimensional space that is practically impossible to explore
exhaustively” [23]
“Generalizing correctly becomes exponentially harder as the dimensionality
(number of features) of the examples grows, because a fixed-size training
set covers a dwindling fraction of the input space” [24]

⇒ As the number of dimensions increases, the number of examples needs to
grow exponentiallly!
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Dimensionality reduction
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Our intuition fails us beyond three (3) dimensions — yet many machine
learning problems comprise tens, hundreds, thousands, even millions of
features!

“Dimensionality reduction removes redundant or highly correlated
features; it also reduces the noise in the data — all that contributes to the
interpretability of the model.” [2]
In a sense, dimensionality reduction can be seen a way to compress the
data - going from 10,000 features down to 100 features.

See also:
Lan Huong Nguyen and Susan Holmes. Ten quick tips for effective
dimensionality reduction. PLoS Comput Biol, 15(6):e1006907, Jun 2019.
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Objectives
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Dimensionality reduction serves two main objectives:

Data visualization and exploration
Speeding-up machine learning experiments

Some people use dimensionality reduction techniques to address the problem of
overfitting. However, this is not considered to be the right approach. Instead,
rugularization should be applied.
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A word of caution
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According to Aurélien Géron, Hands-on Machine Learning with Scikit-Learn, Keras,
and TensorFlow 2019, § 8:

“In some cases, reducing the dimensionality of the training data may
filter out some noise and unnecessary details and thus result in higher
performance, but in general it won’t; it will just speed up training.”

Here is what Ankur S. Patel, Hands-on Unsupervised Learning with Python 2019, has
to say (§ 1):

“With dimensionality reduction, we can find the most salient features in the
original feature set, reduce the number of dimensions to a more manageable
number while losing very little important information in the process, and
then apply supervised algorithms to more efficiently perform the search for a
good function approximation.”
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Advice
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Dimensionality reduction makes easier to visualize your data and gain
insights into its structure — #DataVisualization, #DataExploration.



Dimensionality reduction
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Projection — Principal Component Analysis (PCA)
Manifold Lerning
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Projection - intuition

Dimensionality reduction 64/92

Imagine the extreme situation
where you would like to use a
single dimension to represent
the data.

Here, I do not mean selecting
a single (most informative)
feature — this would be
called feature selection.
I mean a new
representation, where each
example i , is represented by a
vector, Zi , with only one
column.

How would you do that?

x1

1.5 1.0 0.5 0.0 0.5 1.0 1.5

x2
1.0

0.5
0.0

0.5
1.0

x 3

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Source: Adapted [1] Figure 8.2
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Projection - intuition
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We are looking for a vector (Z1)
(a line) minimizing the
average squared projection
error:

1
N

N∑
i=1

||xi − x i ||2

where x i is the projection of xi
onto that vector.

What would this line look like?

This would be a projection
that preserves as much of the
variance as possible.
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Projection - intuition
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You now would now like to use two
dimensions to represent the data.

Given our first choice of vector, how would
you select a second vector?

You want this vector to be orthogonal to
the first the vector. Do you see why?
Otherwise, there would a (linear)
dependency between the vectors, which is
what we are trying to eliminate. We are
looking for independent features.
Our first and second vector are now
forming a plane.
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Source: Adapted from [1] Figure 8.2



Projection - intuition

Dimensionality reduction 66/92

You now would now like to use two
dimensions to represent the data.
Given our first choice of vector, how would
you select a second vector?

You want this vector to be orthogonal to
the first the vector. Do you see why?
Otherwise, there would a (linear)
dependency between the vectors, which is
what we are trying to eliminate. We are
looking for independent features.
Our first and second vector are now
forming a plane.

x1

1.5 1.0 0.5 0.0 0.5 1.0 1.5

x2
1.0

0.5
0.0

0.5
1.0

x 3

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Source: Adapted from [1] Figure 8.2



Projection - intuition

Dimensionality reduction 66/92

You now would now like to use two
dimensions to represent the data.
Given our first choice of vector, how would
you select a second vector?

You want this vector to be orthogonal to
the first the vector. Do you see why?

Otherwise, there would a (linear)
dependency between the vectors, which is
what we are trying to eliminate. We are
looking for independent features.
Our first and second vector are now
forming a plane.

x1

1.5 1.0 0.5 0.0 0.5 1.0 1.5

x2
1.0

0.5
0.0

0.5
1.0

x 3

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Source: Adapted from [1] Figure 8.2



Projection - intuition

Dimensionality reduction 66/92

You now would now like to use two
dimensions to represent the data.
Given our first choice of vector, how would
you select a second vector?

You want this vector to be orthogonal to
the first the vector. Do you see why?
Otherwise, there would a (linear)
dependency between the vectors, which is
what we are trying to eliminate. We are
looking for independent features.

Our first and second vector are now
forming a plane.

x1

1.5 1.0 0.5 0.0 0.5 1.0 1.5

x2
1.0

0.5
0.0

0.5
1.0

x 3

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Source: Adapted from [1] Figure 8.2



Projection - intuition

Dimensionality reduction 66/92

You now would now like to use two
dimensions to represent the data.
Given our first choice of vector, how would
you select a second vector?

You want this vector to be orthogonal to
the first the vector. Do you see why?
Otherwise, there would a (linear)
dependency between the vectors, which is
what we are trying to eliminate. We are
looking for independent features.
Our first and second vector are now
forming a plane.

x1

1.5 1.0 0.5 0.0 0.5 1.0 1.5

x2
1.0

0.5
0.0

0.5
1.0

x 3

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Source: Adapted from [1] Figure 8.2



Projection - intuition

Dimensionality reduction 67/92

We are looking for a second
vector (Z2) minimizing the
average squared projection
error:

1
N

N∑
i=1

||xi − x i ||2

where x i is the projection of xi
onto the plane formed by the
two selected vectors. Source: [1] Figure 8.2



Projection - intuition
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If our data had more than three
(3) dimension, D >> 3, we
could continue adding new
vectors.

We would select a third vector
(Z3) so as to minimize the
avererage squared projection
error. The data would now be
projected onto a cube.
This process can be repeated
for all possible k < D. We
would now be projecting the
data in a k dimensional space,
which we cannot easily visualize
if k > 3.

Source: [1] Figure 8.2
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Projection - remarks
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Notice that, the first component (Z1) explains most of the variation
(variance).

The second component (Z2) explains less of the variance than the first
component, but more than the third.
As more and more components are added, the projection error decreases,
more and more of the variation variance in the data is explained.
Using k = D components would reduce the variance to 0 [is this true?].
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Projection
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⇒

Source: [1] Figures 8.2 & 8.3



Before applying PCA

Dimensionality reduction 71/92

The data should be centered (mean normalization) and possibly scaled.
Scikit-Learn will take care of centering the data for you.



PCA algorithm - Andrew Ng
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https://youtu.be/rng04VJxUt4

https://youtu.be/rng04VJxUt4


Choosing k - Andrew Ng
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https://youtu.be/5aHWplWElcc

https://youtu.be/5aHWplWElcc


sklearn.decomposition.PCA
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from s k l e a r n . decompos i t i on import PCA

pca = PCA( n_components = 2)
Z = pca . f i t _ t r a n s f o r m (X)

>>> pca.explained_variance_ratio_
array([0.84248607, 0.14631839])

Source: [1] §8



Principal Component Analysis
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Ma, S. & Dai, Y. Principal component analysis based methods in
bioinformatics studies. Brief Bioinform 12, 714722 (2011).

“Variable selection approaches search for a subset of genes to represent the
effects of all genes.”
“In contrast, dimension reduction approaches search for a small number of
metagenes, which are often linear combinations of all genes.”
“The dimensionality of gene expressions needs to be reduced prior to
regression and many other types of analyses.”
“In contrast, in gene profiling studies, only a small number of genes profiled
are expected to be associated with the response variables and the majority of
the genes are noises.”
For future reference: Supervised and sparse PCA are said to be more effective
than standard PCA.



Principal Component Analysis
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K Y Yeung and W L Ruzzo, Principal component analysis for clustering gene
expression data, Bioinformatics 17 (2001), no. 9, 76374.
Michael Lenz, Franz-Josef Müller, Martin Zenke, and Andreas Schuppert,
Principal components analysis and the reported low intrinsic dimensionality
of gene expression microarray data, Sci Rep 6 (2016), 25696.
Lever, J., Krzywinski, M. & Atman, N. POINTS OF SIGNIFICANCE
Principal component analysis. Nat Meth 14, 641642 (2017).
Ringnér, M. What is principal component analysis? Nat Biotechnol 26,
303304 (2008).
Joseph C Roden, Brandon W King, Diane Trout, Ali Mortazavi, Barbara J
Wold, and Christopher E Hart, Mining gene expression data by interpreting
principal components, BMC Bioinformatics 7 (2006), 194.
https://www.kaggle.com/crawford/principle-component-analysis-gene-expression

https://www.kaggle.com/crawford/principle-component-analysis-gene-expression


Manifold Learning
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“A manifold is a topological space
that is locally Euclidean (. . . )”.
Wolfram MathWorld
“Put simply, a 2D manifold is a
2D shape that can be bent and
twisted in a higher-dimensional
space. More generally, a
d-dimensional manifold is a part
of an n-dimensional space (where
d < n) that locally resembles a
d-dimensional hyperplane.” [1] Source: [1] Figure 8.4



Manifold Learning
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“[T]he manifold hypothesis, which
holds that most real-world
high-dimensional datasets lie close
to a much lower-dimensional
manifold.” [1]
“The manifold assumption is
often accompanied by another
implicit assumption: that the task
at hand (e.g., classification or
regression) will be simpler if
expressed in the lower-dimensional
space of the manifold.” [1] Source: [1] Figure 8.4



Easier?
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Source: [1] Figure 8.6

“The decision boundary may not always be simpler with lower dimensions.”



Summary
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Dimensionality reduction methods are linearly (PCA) or non-linearly
transforming the data so as to reduce the number of features, thus
speeding-up the downstream analysis (unsupervised/supervised learning).
Principal Component Analysis (PCA) can be used to explore and
visualize your data.

For example, if most of the variation in your data can be explained with a
small number of components, then your data has many redundant features.

Only apply dimensionality if needed (or compare with and without data
reduction).



Resources (videos)
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Lectures on Machine Learning by Andrew Ng - specifically, the lectures on
unsupervised learning and dimensionality reduction.

1. Motivation I - data compression (10 m 9 s)
2. Motivation II - data visualization (5 m 28 s)
3. Principal Componant Analysis (PCA) - problem formulation (9 m 5 s)
4. Principal Componant Analysis (PCA) - algorithm∗ (15 m 14 s)
5. Choosing the number of principal components∗ (10 m 30 s)
6. Reconstruction from compressed representation (3 m 54 s)
7. Advice for applying PCA (12 m 48 s)

I find the videos indicated with ∗ particularly insightful.

https://www.coursera.org/learn/machine-learning
https://www.andrewng.org
https://youtu.be/Zbr5hyJNGCs
https://youtu.be/cnCzY5M3txk
https://youtu.be/T-B8muDvzu0
https://youtu.be/rng04VJxUt4
https://youtu.be/5aHWplWElcc
https://youtu.be/R8zHEyT2R4E
https://youtu.be/xI9-I-gcwaw


2020
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Double clustering algorithms for gene profiling.
Presenting clustering algorithms that are specific to bioinformatics.
Disucssion on single-cell RNA-seq data.
Discussion on feature selection methods.

Jing Tang, Yunxia Wang, Jianbo Fu, Ying Zhou, Yongchao Luo, Ying Zhang,
Bo Li, Qingxia Yang, Weiwei Xue, Yan Lou, Yunqing Qiu, and Feng Zhu. A
critical assessment of the feature selection methods used for biomarker
discovery in current metaproteomics studies. Brief Bioinform, Jun 2019.
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Prologue



Summary
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Most of the available data is unlabelled.

Transcriptomics serves many purposes, including gene function annotation.
Clustering algorithms are generally simple. We considered KMeans,
hierarchical, and DBSCAN.
Finding the number of optimal clusters is not simple
Removing redundant features will accelerate (supervised) learning
Dimensionality reduction is more about speed than learning accuracy?
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Next module
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Linear and logistic regression
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