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Regularized Linear Models

In this lecture, we introduce the concept of regularization. We consider the specific
context of linear models: Ridge Regression, Lasso Regression, and Elastic Net. Finally,
we discuss a simple technique called early stopping.

General objective :
= Explain the concept of regularization in the context of linear regression and
logistic
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Learning objectives

= Explain the concept of regularization in the context of linear regression and
logistic

Reading:
= Simon Dirmeier, Christiane Fuchs, Nikola S Mueller, and Fabian J Theis,

netReg: network-regularized linear models for biological association studies,
Bioinformatics 34 (2018), no. 5, 896898.
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Introduction



Supervised learning

= The data set is a collection of labelled examples.

N
{(xi, yi) iz
» Each x; is a feature vector with D dimensions.

x,E’) is the value of the feature j of the example k, for j € 1...D and

kel...N.
The label y; is either a class, taken from a finite list of classes, {1,2,..., C},
or a real number, or a more complex object (vector, matrix, tree, graph,
etc).
= Problem: given the data set as input, create a “model” that can be used
to predict the value of y for an unseen x.
Classification: y; € {Positive, Negative}, a binary classification problem.
Regression: y; is a real number.
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Linear Regression

= A linear model assumes that the value of the label, y;, can be expressed as
a linear combination of the feature values, xY):

i .

Vi = h(x;) =6 + 91X;(1) + 92X,-(2) .ot QDX,'(D)

Introduction 8/42



Linear Regression

= A linear model assumes that the value of the label, y;, can be expressed as
a linear combination of the feature values, xY):

» Here, 6, is the jthe parameter of the (linear) model, with 6, being the bias
term/parameter, 0 . ..0p being the feature weights.

Introduction 8/42



Linear Regression
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Linear Regression

= A linear model assumes that the value of the label, y;, can be expressed as

a linear combination of the feature values, x,-(J):

Vi = h(x;) =6 + 91X;(1) + (92X,-(2) .ot QDX,'(D)

» Here, 6, is the jthe parameter of the (linear) model, with 6, being the bias
term/parameter, 0 . ..0p being the feature weights.
= Problem: find values for all the model parameters so that the model “best
fit” the training data.
The Root Mean Square Error is a common performance measure for
regression problems.

1 N
J 3 2lAC)

Introduction



Polynomial Regression
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Polynomial Regression

= What if the data is more complex?
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Polynomial Regression

= What if the data is more complex?

= In our discussion on underfitting and overfitting the training data, we did
look at polynomial models, but did not discuss how to learn them.
= Can we use our linear model to “fit" non linear data, and specifically data
would have been generated by a polynomial “process”?
How?

Polynomial Regression 10/42



sklearn.preprocessing.PolynomialFeatures

= A surprisingly simple solution consists of generating new features that are
powers of existing ones!
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sklearn.preprocessing.PolynomialFeatures

= A surprisingly simple solution consists of generating new features that are
powers of existing ones!

from sklearn.preprocessing import PolynomialFeatures
poly_features = PolynomialFeatures(degree=2, include_bias=False)

X_poly = poly_features.fit_transform (X)

from sklearn.linear_model import LinearRegression

lin_reg

LinearRegression ()
lin_reg . fit(X_poly, vy)

print(lin_reg.intercept_, lin_reg.coef_)
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Example fitting a linear model

import numpy as np

X =2 % np.random.rand (100, 1)
y =4+ 3 x X+ np.random.randn (100, 1)

from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression ()

lin_reg.fit(X, y)

lin_reg.intercept_, lin_reg.coef_

# [4.07916603] [[2.90173949]]

= ¥y =4+ 3x+ noise
= y=4.07916603 + 2.90173949x
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Example fitting a polynomial model

import numpy as np

6 * np.random.rand (100, 1) — 3
2 + 0.5 % X«x2 + X + np.random.randn (100, 1)

y
from sklearn.preprocessing import PolynomialFeatures

poly_features = PolynomialFeatures(degree=2, include_bias=False)
X_poly = poly_features.fit_transform (X)

lin_reg = LinearRegression ()
lin_reg.fit(X_poly, vy)
lin_reg.intercept_ , lin_reg.coef_

# [1.701144] [[1.02118676 0.55725864]]

* y=20+0.5x2+ 1.0x + noise
= § =1.701144 + 0.55725864x> + 1.02118676x
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= For higher degrees, PolynomialFeatures adds all the combination of
features.
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= For higher degrees, PolynomialFeatures adds all the combination of
features.
Given two features a and b, PolynomialFeatures generates, a2, a3, b2, b3,
but also ab, a’b, ab?.
= Given n features and degree d, PolynomialFeatures produces (':;,r:,)!
combinations! -
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Regularization
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Bias/Variance trade-off

From [2] §4:

= “(...) a models generalization error can be expressed as the sum of three
very different errors:”
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Bias/Variance trade-off

From [2] §4:
= “(...) a models generalization error can be expressed as the sum of three
very different errors:”

Bias: “is due to wrong assumptions”, “A high-bias model is most likely to
underfit the training data”
Variance: “the model's excessive sensitivity to small variations in the
training data”. A model with many parameters “is likely to have high
variance and thus overfit the training data.”
Irreducible error: “noisiness of the data itself”

= ‘“Increasing a models complexity will typically increase its variance and
reduce its bias. Conversely, reducing a models complexity increases its
bias and reduces its variance.”
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Overfitting and underfitting

Figure 4-14. High-degree Polynomial Regression

Source: Géron 2019
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Linear model - underfitting
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Figure 4-15. Learning curves

Source: Géron 2019
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Polynomial of degree 10 - overfitting
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Figure 4-16. Learning curves for the 10th-degree polynomial model

Source: Géron 2019
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Regularization

= “Constraining a model to make it simpler and reduce the risk of overfitting is
called regularization.” [2]
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Regularization

= “Constraining a model to make it simpler and reduce the risk of overfitting is
called regularization.” [2]

= One way to regularized a polynomial model is to restrict its degree.
How would you do that?
= Make the degree a hyperpamater, use a holding set or cross-validation.

= Alternatively, we can constraint the weights of the model.
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= A norm is a function that assigns a number (length, size) to a vector.

= (,-norm
D . 1
Cp-norm = [[0]], = (3_ [6V)[")>
j=1
= {1-norm
D .
l-norm = ||0||; = Z |9(J)|
j=1
= l5-norm
D
lr-norm = ||0]|], = Z 160) |2
j=1
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Ridge Regression

= You will remember the objective function, Mean Squared Error (MSE),
used by our gradient descent.

21: y1]2

=2+~
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Ridge Regression

= You will remember the objective function, Mean Squared Error (MSE),
used by our gradient descent.

 lAG)

= In the case Ridge Regression, the objective function becomes:

N
5 Sl — v + aZ9°
1

==
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Ridge Regression

= You will remember the objective function, Mean Squared Error (MSE),
used by our gradient descent.

LS lht) —
N T 1 yl
= In the case Ridge Regression, the objective function becomes:
1Y , 1 &
N > _[h(x) = yi]* + 504290)
1 1

= The regularization is applying at learning time only.
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1Y )
~ h(x;) — yi
 20h00) v
= In the case Ridge Regression, the objective function becomes:
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= The regularization is applying at learning time only.

= « is a hyperparameter, with a = 0, Ridge Regression is equivalent to a
Linear Regression.
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Ridge Regression

= You will remember the objective function, Mean Squared Error (MSE),
used by our gradient descent.

1Y )
~ h(x;) — yi
 20h00) v
= In the case Ridge Regression, the objective function becomes:
1Y , 1 &
N > _[h(x) = yi]* + 504290)
1 1
= The regularization is applying at learning time only.

= « is a hyperparameter, with a = 0, Ridge Regression is equivalent to a
Linear Regression.

- %a ZID 0U)2 is the ¢,-norm of the weight vector.
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sklearn.linear_model.Ridge

from sklearn.linear_model import Ridge

ridge_reg = Ridge(alpha=1, solver="cholesky")
ridge_reg. fit (X, y)
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Ridge Regression

4.0 4.0

3.5 1 h
--- a=10 --- a=1le—-05 1

00 05 10 15 20 25 30 00 05 10 15 20 25 3.0
X1 X1

Source: [2] Figure 4.17
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Lasso Regression

= Another popular regularization is the Least Absolute Shrinkage and
Selection Operator Regression, Lasso Regression.
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Lasso Regression

= Another popular regularization is the Least Absolute Shrinkage and
Selection Operator Regression, Lasso Regression.

= Its objective function is:

N

Z %12+aZ9

1
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1 N D )
5 M) — v+ o0
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Lasso Regression

= Another popular regularization is the Least Absolute Shrinkage and
Selection Operator Regression, Lasso Regression.

= Its objective function is:
1 N D
) .
5 S lh(x) = v a3 69
1 1
= The regularization is applying at learning time only.
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Lasso Regression

= Another popular regularization is the Least Absolute Shrinkage and
Selection Operator Regression, Lasso Regression.

= Its objective function is:
1 N D )
5 M) — v+ o0
1 1

= The regularization is applying at learning time only.

= « is a hyperparameter, with o = 0, Lasso Regression is equivalent to a
Linear Regression.

¥ aXP 0 is the £1-norm of the weight vector.
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Lasso Regression

-

-

Regularization

Another popular regularization is the Least Absolute Shrinkage and
Selection Operator Regression, Lasso Regression.

Its objective function is:
1 N D )
5 M) — v+ o0
1 1

The regularization is applying at learning time only.

« is a hyperparameter, with v = 0, Lasso Regression is equivalent to a
Linear Regression.

a P 00) is the f1-norm of the weight vector.

Lasso regression favors sparse models (models with few terms with non-zero
weights)
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Lasso Regression
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Source: [2] Figure 4.18
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Ridge and Lasso regression

= “Your role as the data analyst is to find such a value of the hyperparameter
[a] that doesn’t increase the bias too much but reduces the variance
to a level reasonable for the problem at hand.” [3]

= In practice, ¢{;-norm (Lasso) produces models that are sparse. Thus acting
as a feature selection mechanism.

= However, /,-norm (Ridge) usually gives better results in practice.
= These norms are frequently used with other models/objective functions.
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Elastic Net

= Elastic Net is a mixture of Ridge Regression and Lasso Regression.
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Elastic Net

= Elastic Net is a mixture of Ridge Regression and Lasso Regression.
-

N _ D
S Thn) Y00+ 1 0y 00
1 1

=2+
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Elastic Net

= Elastic Net is a mixture of Ridge Regression and Lasso Regression.
-

1 N D ) 1—r D )
N > _[h(6) =yl +rad - 09 + T“ZQW
1 1 1

= It adds a second hyperparameter r, to control ratio of ¢, and /;
regularization.
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Elastic Net

= Elastic Net is a mixture of Ridge Regression and Lasso Regression.
-

1 N D ) 1—r D )
N > _[h(6) =yl +rad - 09 + T“ZQW
1 1 1

= It adds a second hyperparameter r, to control ratio of ¢, and /;
regularization.

= In all three cases, the summation starts at 1, i.e. the bias term (here, the
intercept) is excluded from the regularization.

Regularization 28/42



sklearn.linear_model.ElasticNet

from sklearn.linear_model import ElasticNet

elastic_net = ElasticNet(alpha=0.1, I1_ratio=0.5)
elastic_net. fit (X, vy)

Source: [2] §4

Regularization
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— Validation set
351 -—- Training set
3.0
5.1_) 2.5
s \ Best model
<20
1.5
1.0
0 100 200 300 400 500
Epoch

Geoffrey Hinton called this the “beautiful free lunch”
Source: [2] Figure 4.20

Regularization 30/42



= The criteria used to drive the optimization (training) can be different than
the criteria used for the hyper parameter selection procedure.

= Regularized models are known to be sensitive to the scale of features, thus
the data should be “normalized”.

= “(...) the fewer degrees of freedom it has, the harder it will be for it
to overfit the data.”
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Logistic Regression
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Logistic (Logit) Regression

= Despite its name, Logistic Regression is a classification algorithm.
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Logistic (Logit) Regression

= Despite its name, Logistic Regression is a classification algorithm.

= The labels are binary values, y; € {0,1}.

= It is formulated to answer the question, “what is the probability that x; is
a positive example, i.e. y; = 17"

= Just like the Linear Regression, the Logistic Regression computes a
weighted sum of the input features:

= The image of this function is —co to oc!
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Logistic Regression

= In mathematics, a standard logistic function maps a real value (R) to the
interval (0,1):

/

Logistic Regression
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https://en.wikipedia.org/wiki/Logistic_function

Logistic Regression

= The Logistic Regression model, in its vectorized form is:

1

hg(X,') = O'(QX,') = W
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Logistic Regression

= The Logistic Regression model, in its vectorized form is:

1
ho(x;)) = o(0x;) = ———
() = 0(0%) = -
= Predictions are made as follows:
- Y= 0, if hg(X,') < 0.5
= oyi=1,0f hg(X,') >0.5
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Logistic Regression

= The Logistic Regression model, in its vectorized form is:

1

hg(X,') = O'(QX,') = W

= Predictions are made as follows:
- Y= 0, if hg(X,') < 0.5
s yi= 1, if hg(X,') > 0.5
= The values of 0 are learnt using gradient descent.
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2020

= Include the derivation of the loss (objective) function.
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sklearn.linear_model.LogisticRegression

from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression ()
log_reg.fit (X, vy)

y_proba = log_reg.predict_proba (X_new)

Logistic Regression
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= Regularization is the idea to constrain a model making it simpler, thus less
prone to overfitting.
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= Regularization is the idea to constrain a model making it simpler, thus less
prone to overfitting.
= Limiting the complexity of the model is one way to add regularization.
Limiting the degree of the polynomial in case of a polynomial model.
= Often, penalty terms are added to the objective (cost) function.

Ridge: />-norm term is added to the objective function.
Lasso: /1-norm term is added to the objective function.
Elastic Net: both, /> and £;-norm terms are added to the objective function.

= Early stopping criteria is an effective and fairly general regularization, it
can be applied iterative learning algorithms, such as batch gradient.

= Contrary to Principal Component Analysis, the above techniques are of
their impact on the performance of the learning algorithms (o the validation
set).
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Next module

= Models related to decision trees
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