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Regularized Linear Models

In this lecture, we introduce the concept of regularization. We consider the specific
context of linear models: Ridge Regression, Lasso Regression, and Elastic Net. Finally,
we discuss a simple technique called early stopping.

General objective :
Explain the concept of regularization in the context of linear regression and
logistic



Learning objectives

Preamble 4/42

Explain the concept of regularization in the context of linear regression and
logistic

Reading:
Simon Dirmeier, Christiane Fuchs, Nikola S Mueller, and Fabian J Theis,
netReg: network-regularized linear models for biological association studies,
Bioinformatics 34 (2018), no. 5, 896898.
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The data set is a collection of labelled examples.
{(xi , yi)}N

i=1
Each xi is a feature vector with D dimensions.
x (j)

k is the value of the feature j of the example k, for j ∈ 1 . . . D and
k ∈ 1 . . . N.

The label yi is either a class, taken from a finite list of classes, {1, 2, . . . , C},
or a real number, or a more complex object (vector, matrix, tree, graph,
etc).

Problem: given the data set as input, create a “model” that can be used
to predict the value of y for an unseen x .

Classification: yi ∈ {Positive, Negative}, a binary classification problem.
Regression: yi is a real number.
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A linear model assumes that the value of the label, ŷi , can be expressed as
a linear combination of the feature values, x (j)

i :

ŷi = h(xi) = θ0 + θ1x (1)
i + θ2x (2)

i + . . . + θDx (D)
i

Here, θj is the jthe parameter of the (linear) model, with θ0 being the bias
term/parameter, θ1 . . . θD being the feature weights.
Problem: find values for all the model parameters so that the model “best
fit” the training data.

The Root Mean Square Error is a common performance measure for
regression problems. √√√√ 1

N

N∑
1

[h(xi) − yi ]2
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ŷi = h(xi) = θ0 + θ1x (1)
i + θ2x (2)

i + . . . + θDx (D)
i

Here, θj is the jthe parameter of the (linear) model, with θ0 being the bias
term/parameter, θ1 . . . θD being the feature weights.
Problem: find values for all the model parameters so that the model “best
fit” the training data.

The Root Mean Square Error is a common performance measure for
regression problems. √√√√ 1

N

N∑
1

[h(xi) − yi ]2



Linear Regression

Introduction 8/42

A linear model assumes that the value of the label, ŷi , can be expressed as
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What if the data is more complex?

In our discussion on underfitting and overfitting the training data, we did
look at polynomial models, but did not discuss how to learn them.
Can we use our linear model to “fit” non linear data, and specifically data
would have been generated by a polynomial “process”?

How?
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A surprisingly simple solution consists of generating new features that are
powers of existing ones!

from s k l e a r n . p r e p r o c e s s i n g import P o l y n o m i a l F e a t u r e s

p o l y _ f e a t u r e s = P o l y n o m i a l F e a t u r e s ( deg r ee =2, i n c l u d e _ b i a s=F a l s e )

X_poly = p o l y _ f e a t u r e s . f i t _ t r a n s f o r m (X)

from s k l e a r n . l i n e a r _m od e l import L i n e a r R e g r e s s i o n

l i n _ r e g = L i n e a r R e g r e s s i o n ( )

l i n _ r e g . f i t ( X_poly , y )

p r i n t ( l i n _ r e g . i n t e r c e p t _ , l i n _ r e g . coef_ )
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import numpy as np

X = 2 ∗ np . random . rand (100 , 1)
y = 4 + 3 ∗ X + np . random . randn (100 , 1)

from s k l e a r n . l i n e a r _ m od e l import L i n e a r R e g r e s s i o n

l i n _ r e g = L i n e a r R e g r e s s i o n ( )

l i n _ r e g . f i t (X, y )

l i n _ r e g . i n t e r c e p t _ , l i n _ r e g . coef_

# [ 4 . 0 7 9 1 6 6 0 3 ] [ [ 2 . 9 0 1 7 3 9 4 9 ] ]

y = 4 + 3x + noise
ŷ = 4.07916603 + 2.90173949x



Example fitting a polynomial model
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import numpy as np

X = 6 ∗ np . random . rand (100 , 1) − 3
y = 2 + 0 .5 ∗ X∗∗2 + X + np . random . randn (100 , 1)

from s k l e a r n . p r e p r o c e s s i n g import P o l y n o m i a l F e a t u r e s

p o l y _ f e a t u r e s = P o l y n o m i a l F e a t u r e s ( deg r ee =2, i n c l u d e _ b i a s=F a l s e )
X_poly = p o l y _ f e a t u r e s . f i t _ t r a n s f o r m (X)

l i n _ r e g = L i n e a r R e g r e s s i o n ( )
l i n _ r e g . f i t ( X_poly , y )
l i n _ r e g . i n t e r c e p t _ , l i n _ r e g . coef_

# [ 1 . 7 0 1 1 4 4 ] [ [ 1 . 0 2 1 1 8 6 7 6 0 . 5 5 7 2 5 8 6 4 ] ]

y = 2.0 + 0.5x2 + 1.0x + noise
ŷ = 1.701144 + 0.55725864x2 + 1.02118676x
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For higher degrees, PolynomialFeatures adds all the combination of
features.

Given two features a and b, PolynomialFeatures generates, a2, a3, b2, b3,
but also ab, a2b, ab2.

Given n features and degree d , PolynomialFeatures produces (n+d)!
d!n!

combinations!
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From [2] §4:
“(. . . ) a models generalization error can be expressed as the sum of three
very different errors:”

Bias: “is due to wrong assumptions”, “A high-bias model is most likely to
underfit the training data”
Variance: “the model’s excessive sensitivity to small variations in the
training data”. A model with many parameters “is likely to have high
variance and thus overfit the training data.”
Irreducible error: “noisiness of the data itself”

“Increasing a models complexity will typically increase its variance and
reduce its bias. Conversely, reducing a models complexity increases its
bias and reduces its variance.”
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Source: Géron 2019



Linear model - underfitting
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Source: Géron 2019



Polynomial of degree 10 - overfitting
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Source: Géron 2019
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“Constraining a model to make it simpler and reduce the risk of overfitting is
called regularization.” [2]

One way to regularized a polynomial model is to restrict its degree.

How would you do that?

Make the degree a hyperpamater, use a holding set or cross-validation.

Alternatively, we can constraint the weights of the model.
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A norm is a function that assigns a number (length, size) to a vector.
ℓp-norm

ℓp-norm = ||θ||p = (
D∑

j=1
|θ(j)|p)

1
p

ℓ1-norm

ℓl -norm = ||θ||1 =
D∑

j=1
|θ(j)|

ℓ2-norm

ℓ2-norm = ||θ||2 =

√√√√√ D∑
j=1

|θ(j)|2
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You will remember the objective function, Mean Squared Error (MSE),
used by our gradient descent.

1
N

N∑
1

[h(xi) − yi ]2

In the case Ridge Regression, the objective function becomes:

1
N

N∑
1

[h(xi) − yi ]2 + 1
2α

D∑
1

θ(j)2

The regularization is applying at learning time only.
α is a hyperparameter, with α = 0, Ridge Regression is equivalent to a
Linear Regression.
1
2α

∑D
1 θ(j)2 is the ℓ2-norm of the weight vector.
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from s k l e a r n . l i n e a r _ m od e l import Ridge

r i d g e _ r e g = Ridge ( a lpha =1, s o l v e r=" c h o l e s k y " )
r i d g e _ r e g . f i t (X, y )



Ridge Regression
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Source: [2] Figure 4.17



Lasso Regression
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Another popular regularization is the Least Absolute Shrinkage and
Selection Operator Regression, Lasso Regression.

Its objective function is:

1
N

N∑
1

[h(xi) − yi ]2 + α
D∑
1

θ(j)

The regularization is applying at learning time only.
α is a hyperparameter, with α = 0, Lasso Regression is equivalent to a
Linear Regression.
α

∑D
1 θ(j) is the ℓ1-norm of the weight vector.

Lasso regression favors sparse models (models with few terms with non-zero
weights)
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Source: [2] Figure 4.18



Ridge and Lasso regression
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“Your role as the data analyst is to find such a value of the hyperparameter
[α] that doesn’t increase the bias too much but reduces the variance
to a level reasonable for the problem at hand.” [3]
In practice, ℓ1-norm (Lasso) produces models that are sparse. Thus acting
as a feature selection mechanism.
However, ℓ2-norm (Ridge) usually gives better results in practice.
These norms are frequently used with other models/objective functions.
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Elastic Net is a mixture of Ridge Regression and Lasso Regression.

1
N

N∑
1

[h(xi) − yi ]2 + rα
D∑
1

θ(j) + 1 − r
2 α

D∑
1

θ(j)2

It adds a second hyperparameter r , to control ratio of ℓ2 and ℓ1
regularization.
In all three cases, the summation starts at 1, i.e. the bias term (here, the
intercept) is excluded from the regularization.
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N∑
1

[h(xi) − yi ]2 + rα
D∑
1

θ(j) + 1 − r
2 α

D∑
1

θ(j)2

It adds a second hyperparameter r , to control ratio of ℓ2 and ℓ1
regularization.
In all three cases, the summation starts at 1, i.e. the bias term (here, the
intercept) is excluded from the regularization.



sklearn.linear_model.ElasticNet
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from s k l e a r n . l i n e a r _ m od e l import E l a s t i c N e t

e l a s t i c _ n e t = E l a s t i c N e t ( a lpha =0.1 , l 1 _ r a t i o =0.5)
e l a s t i c _ n e t . f i t (X, y )

Source: [2] §4
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Geoffrey Hinton called this the “beautiful free lunch”
Source: [2] Figure 4.20



Remarks
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The criteria used to drive the optimization (training) can be different than
the criteria used for the hyper parameter selection procedure.
Regularized models are known to be sensitive to the scale of features, thus
the data should be “normalized”.
“(. . . ) the fewer degrees of freedom it has, the harder it will be for it
to overfit the data.”



Logistic Regression 32/42

Logistic Regression



Logistic (Logit) Regression

Logistic Regression 33/42

Despite its name, Logistic Regression is a classification algorithm.

The labels are binary values, yi ∈ {0, 1}.
It is formulated to answer the question, “what is the probability that xi is
a positive example, i.e. yi = 1?”
Just like the Linear Regression, the Logistic Regression computes a
weighted sum of the input features:

θ0 + θ1x (1)
i + θ2x (2)

i + . . . + θDx (D)
i

The image of this function is −∞ to ∞!
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Logistic Regression
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In mathematics, a standard logistic function maps a real value (R) to the
interval (0, 1):

0

0.5

1

−6 −4 −2  0  2  4  6

Source: Wikipedia

σ(t) = 1
1 + e−t

https://en.wikipedia.org/wiki/Logistic_function


Logistic Regression
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The Logistic Regression model, in its vectorized form is:

hθ(xi) = σ(θxi) = 1
1 + e−θxi

Predictions are made as follows:

yi = 0, if hθ(xi) < 0.5
yi = 1, if hθ(xi) ≥ 0.5

The values of θ are learnt using gradient descent.
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The Logistic Regression model, in its vectorized form is:

hθ(xi) = σ(θxi) = 1
1 + e−θxi

Predictions are made as follows:
yi = 0, if hθ(xi) < 0.5
yi = 1, if hθ(xi) ≥ 0.5
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Include the derivation of the loss (objective) function.



sklearn.linear_model.LogisticRegression
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from s k l e a r n . l i n e a r _ m od e l import L o g i s t i c R e g r e s s i o n

log_reg = L o g i s t i c R e g r e s s i o n ( )
l og_reg . f i t (X, y )

# . . .

y_proba = log_reg . p r e d i c t _p ro ba (X_new)
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Regularization is the idea to constrain a model making it simpler, thus less
prone to overfitting.

Limiting the complexity of the model is one way to add regularization.

Limiting the degree of the polynomial in case of a polynomial model.

Often, penalty terms are added to the objective (cost) function.

Ridge: ℓ2-norm term is added to the objective function.
Lasso: ℓ1-norm term is added to the objective function.
Elastic Net: both, ℓ2 and ℓ1-norm terms are added to the objective function.

Early stopping criteria is an effective and fairly general regularization, it
can be applied iterative learning algorithms, such as batch gradient.
Contrary to Principal Component Analysis, the above techniques are of
their impact on the performance of the learning algorithms (o the validation
set).



Summary

Prologue 39/42

Regularization is the idea to constrain a model making it simpler, thus less
prone to overfitting.
Limiting the complexity of the model is one way to add regularization.

Limiting the degree of the polynomial in case of a polynomial model.
Often, penalty terms are added to the objective (cost) function.

Ridge: ℓ2-norm term is added to the objective function.
Lasso: ℓ1-norm term is added to the objective function.
Elastic Net: both, ℓ2 and ℓ1-norm terms are added to the objective function.

Early stopping criteria is an effective and fairly general regularization, it
can be applied iterative learning algorithms, such as batch gradient.
Contrary to Principal Component Analysis, the above techniques are of
their impact on the performance of the learning algorithms (o the validation
set).



Summary

Prologue 39/42

Regularization is the idea to constrain a model making it simpler, thus less
prone to overfitting.
Limiting the complexity of the model is one way to add regularization.

Limiting the degree of the polynomial in case of a polynomial model.

Often, penalty terms are added to the objective (cost) function.

Ridge: ℓ2-norm term is added to the objective function.
Lasso: ℓ1-norm term is added to the objective function.
Elastic Net: both, ℓ2 and ℓ1-norm terms are added to the objective function.

Early stopping criteria is an effective and fairly general regularization, it
can be applied iterative learning algorithms, such as batch gradient.
Contrary to Principal Component Analysis, the above techniques are of
their impact on the performance of the learning algorithms (o the validation
set).



Summary

Prologue 39/42

Regularization is the idea to constrain a model making it simpler, thus less
prone to overfitting.
Limiting the complexity of the model is one way to add regularization.

Limiting the degree of the polynomial in case of a polynomial model.
Often, penalty terms are added to the objective (cost) function.

Ridge: ℓ2-norm term is added to the objective function.
Lasso: ℓ1-norm term is added to the objective function.
Elastic Net: both, ℓ2 and ℓ1-norm terms are added to the objective function.

Early stopping criteria is an effective and fairly general regularization, it
can be applied iterative learning algorithms, such as batch gradient.
Contrary to Principal Component Analysis, the above techniques are of
their impact on the performance of the learning algorithms (o the validation
set).



Summary

Prologue 39/42

Regularization is the idea to constrain a model making it simpler, thus less
prone to overfitting.
Limiting the complexity of the model is one way to add regularization.

Limiting the degree of the polynomial in case of a polynomial model.
Often, penalty terms are added to the objective (cost) function.

Ridge: ℓ2-norm term is added to the objective function.

Lasso: ℓ1-norm term is added to the objective function.
Elastic Net: both, ℓ2 and ℓ1-norm terms are added to the objective function.

Early stopping criteria is an effective and fairly general regularization, it
can be applied iterative learning algorithms, such as batch gradient.
Contrary to Principal Component Analysis, the above techniques are of
their impact on the performance of the learning algorithms (o the validation
set).



Summary

Prologue 39/42

Regularization is the idea to constrain a model making it simpler, thus less
prone to overfitting.
Limiting the complexity of the model is one way to add regularization.

Limiting the degree of the polynomial in case of a polynomial model.
Often, penalty terms are added to the objective (cost) function.

Ridge: ℓ2-norm term is added to the objective function.
Lasso: ℓ1-norm term is added to the objective function.

Elastic Net: both, ℓ2 and ℓ1-norm terms are added to the objective function.
Early stopping criteria is an effective and fairly general regularization, it
can be applied iterative learning algorithms, such as batch gradient.
Contrary to Principal Component Analysis, the above techniques are of
their impact on the performance of the learning algorithms (o the validation
set).



Summary

Prologue 39/42

Regularization is the idea to constrain a model making it simpler, thus less
prone to overfitting.
Limiting the complexity of the model is one way to add regularization.

Limiting the degree of the polynomial in case of a polynomial model.
Often, penalty terms are added to the objective (cost) function.

Ridge: ℓ2-norm term is added to the objective function.
Lasso: ℓ1-norm term is added to the objective function.
Elastic Net: both, ℓ2 and ℓ1-norm terms are added to the objective function.

Early stopping criteria is an effective and fairly general regularization, it
can be applied iterative learning algorithms, such as batch gradient.
Contrary to Principal Component Analysis, the above techniques are of
their impact on the performance of the learning algorithms (o the validation
set).



Summary

Prologue 39/42

Regularization is the idea to constrain a model making it simpler, thus less
prone to overfitting.
Limiting the complexity of the model is one way to add regularization.

Limiting the degree of the polynomial in case of a polynomial model.
Often, penalty terms are added to the objective (cost) function.

Ridge: ℓ2-norm term is added to the objective function.
Lasso: ℓ1-norm term is added to the objective function.
Elastic Net: both, ℓ2 and ℓ1-norm terms are added to the objective function.

Early stopping criteria is an effective and fairly general regularization, it
can be applied iterative learning algorithms, such as batch gradient.

Contrary to Principal Component Analysis, the above techniques are of
their impact on the performance of the learning algorithms (o the validation
set).



Summary

Prologue 39/42

Regularization is the idea to constrain a model making it simpler, thus less
prone to overfitting.
Limiting the complexity of the model is one way to add regularization.

Limiting the degree of the polynomial in case of a polynomial model.
Often, penalty terms are added to the objective (cost) function.

Ridge: ℓ2-norm term is added to the objective function.
Lasso: ℓ1-norm term is added to the objective function.
Elastic Net: both, ℓ2 and ℓ1-norm terms are added to the objective function.

Early stopping criteria is an effective and fairly general regularization, it
can be applied iterative learning algorithms, such as batch gradient.
Contrary to Principal Component Analysis, the above techniques are of
their impact on the performance of the learning algorithms (o the validation
set).



Next module
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Models related to decision trees
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