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Decision Trees

In this lecture, we discuss decision trees. One of their main advantages is
interpretability. Also, they naturally work with a mixture of data (feature) types. When
used in the context of ensemble learning, their performance is generally excellent.

General objective :
Explain what decision trees are, how they are built, and how they can be
used to classify data.
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Explain what decision trees are.
Decribe the algorithm to construct a decision tree.
Discuss the concept of purity.
Explain how to use decision trees to classify new examples.

Reading:
Carl Kingsford and Steven L Salzberg. What are decision trees? Nat
Biotechnol 26(9):10113, Sep 2008.
Pierre Geurts, Alexandre Irrthum, and Louis Wehenkel. Supervised learning
with decision tree-based methods in computational and systems biology. Mol
Biosyst 5(12):1593605, Dec 2009.
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Decision trees are supervised learning algorithms.

Tasks:

Regression: yi is a real value (not discussed here);
Classification: yi is a class.

At the heart of Random Forest algorithms, which are some of the best
algorithms when the number of available examples is low.
Handles a mixture of categorical and real-valued features, as well as
missing values, depending on the implementation (Scikit-Learn’s
implementation does not handle the missing values).
The resulting model is easily interpretable by humans!
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C. Kingsford and S. L. Salzberg. What are decision trees? Nat Biotechnol 26(9):10113, 2008.
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Schietgat, L. et al. Predicting gene function using hierarchical multi-label decision tree ensembles.
BMC bioinformatics 11, 14 (2010).
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A decision tree is a hierarchical structure (directed acyclic graph) used
to make decisions (classification, regression).

Each internal node is a (binary) test for some feature j .

E.g. is the expression of a given gene in the given sample higher than
some threshold.

Leaves are decision nodes.
The “structure” of the tree is learnt from the training data.

⇒ More complex representations are possible (for instance, ID3 allows for more than
two children).



What is a decision tree?

What is a decision tree? 11/39

A decision tree is a hierarchical structure (directed acyclic graph) used
to make decisions (classification, regression).
Each internal node is a (binary) test for some feature j .

E.g. is the expression of a given gene in the given sample higher than
some threshold.

Leaves are decision nodes.
The “structure” of the tree is learnt from the training data.

⇒ More complex representations are possible (for instance, ID3 allows for more than
two children).



What is a decision tree?

What is a decision tree? 11/39

A decision tree is a hierarchical structure (directed acyclic graph) used
to make decisions (classification, regression).
Each internal node is a (binary) test for some feature j .

E.g. is the expression of a given gene in the given sample higher than
some threshold.

Leaves are decision nodes.
The “structure” of the tree is learnt from the training data.

⇒ More complex representations are possible (for instance, ID3 allows for more than
two children).



What is a decision tree?

What is a decision tree? 11/39

A decision tree is a hierarchical structure (directed acyclic graph) used
to make decisions (classification, regression).
Each internal node is a (binary) test for some feature j .

E.g. is the expression of a given gene in the given sample higher than
some threshold.

Leaves are decision nodes.

The “structure” of the tree is learnt from the training data.

⇒ More complex representations are possible (for instance, ID3 allows for more than
two children).



What is a decision tree?

What is a decision tree? 11/39

A decision tree is a hierarchical structure (directed acyclic graph) used
to make decisions (classification, regression).
Each internal node is a (binary) test for some feature j .

E.g. is the expression of a given gene in the given sample higher than
some threshold.

Leaves are decision nodes.
The “structure” of the tree is learnt from the training data.

⇒ More complex representations are possible (for instance, ID3 allows for more than
two children).



What is a decision tree?

What is a decision tree? 11/39

A decision tree is a hierarchical structure (directed acyclic graph) used
to make decisions (classification, regression).
Each internal node is a (binary) test for some feature j .

E.g. is the expression of a given gene in the given sample higher than
some threshold.

Leaves are decision nodes.
The “structure” of the tree is learnt from the training data.

⇒ More complex representations are possible (for instance, ID3 allows for more than
two children).



What is a decision tree?

What is a decision tree? 11/39

A decision tree is a hierarchical structure (directed acyclic graph) used
to make decisions (classification, regression).
Each internal node is a (binary) test for some feature j .

E.g. is the expression of a given gene in the given sample higher than
some threshold.

Leaves are decision nodes.
The “structure” of the tree is learnt from the training data.

⇒ More complex representations are possible (for instance, ID3 allows for more than
two children).



Classifying new examples
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It suffices to start at the root of the tree, answering a series of binary
questions, until reaching a leave, the value found in that leave is the
label of that example.

In some cases (algorithms), a leave contains a probability distribution —
the proportion of the training data belonging to class k, for all values of k, in
this leaf.
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Logistic Regression has a simple decision boundary

Source: Geurts, P., Irrthum, A. & Wehenkel, L. Supervised learning with decision tree-based methods
in computational and systems biology. Mol Biosyst 5 15931605 (2009).
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Decision trees can produce a complex and irregular decision boundary

Source: Geurts, P., Irrthum, A. & Wehenkel, L. Supervised learning with decision tree-based methods
in computational and systems biology. Mol Biosyst 5 15931605 (2009).
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Incremental process: starting with an empty tree, nodes are added
one by one guided by the training data until the data is perfectly
classified (or some other criteria applies, e.g. maximum depth).

Consider the case of creating the first node.

It makes sense to consider all D features to create a test. For each
feature, one can consider several thresholds (based on the observed values
in our training set).
What would be good criteria to select the best candidate?

Heterogeneity (impurity) and homogeneity of the resulting sets.
Ideally, each one of the two resulting sets would contain data from a single
class!
Entropy and Geni index are two popular choices.
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Objective function for sklearn.tree.DecisionTreeClassifier (CART):

J(k , tk) = mleft

m Gleft + mright

m Gright

The cost of partitioning the data using feature k and threshold tk .
mleft and mright is the number of examples in the left and right subsets,
respectively, and m is the number of examples before splitting the data.
Gleft and Gright is the impurity of the left and right subsets, respectively.
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Gini index (default)

Gi = 1 −
n∑

k=1
p2

i ,k

pi ,k is the proportion of the examples from this class k in the node i .
Examples:

1 − (0/100)2 + (100/100)2 = 0 (pure)
1 − (25/100)2 + (75/100)2 = 0.375
1 − (50/100)2 + (50/100)2 = 0.5
1 − 10 × (10/100)2 = 0.9
1 − 100 × (1/100)2 = 0.99
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Source: [6] Figures 6.1 and 6.2
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Given a set of training examples, let pk be proportion of these examples
belonging to the class Ck for k ∈ {1, 2, . . . , m} (a probability distribution).

Entropy is defined as follows:

H = −
m∑

k=1
pk log2 pk

Entropy is maximum when the events are all equiprobable. The maximum
value is log2 m.
The entropy approaches 0 as the probability of one class, pk , approches 1.
Entropy and Gini produce similar results:

https://sebastianraschka.com/faq/docs/decision-tree-binary.html
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Entropy (uncertainty) for two classes
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Consider a probability space with two outcomes.

H = −[(1 − p) log2(1 − p) + p log2 p]
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import m a t p l o t l i b
import m a t p l o t l i b . p y p l o t as p l t
import numpy as np

def l g 2 ( v ) :
re tu rn np . where ( v != 0 . 0 , np . l og2 ( v ) , 0 . 0 )

w i th p l t . xkcd ( ) :
p = np . a range ( 0 . 0 , 1 . 0 , 0 . 001 )
h = −((1−p ) ∗ l g 2 (1−p ) + p∗ l g 2 ( p ) )
f i g , ax = p l t . s u b p l o t s ( )
ax . p l o t (p , h )
ax . set ( x l a b e l=’ p ’ , y l a b e l= ’ Entropy ’ , t i t l e =’ Entropy as . . . ’ )
ax . g r i d ( )
p l t . show ( )



Stopping criteria
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All the examples in a given node belong to the same class.

Depth of the tree would exceed max_depth.
Number of examples in the node is min_sample_split or less.
None of the splits decreases impurity sufficiently
(min_impurity_decrease).
See documentation for other criteria.
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Limitations

Limitation 25/39

Possibly creates large trees

Challenge for interpretation
Overfitting

Greedy algorithm, no guarantee to find the optimal tree.
Small changes to the data set, produces vastly different trees.
The decision boundaries are orthogonal, which makes then sensitive to
rotations (this can be alleviated by first running PCA [Principal Component
Analysis], then applying decision trees on the transformed data).
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Stiglic, G., Kocbek, S., Pernek, I. & Kokol, P. Comprehensive Decision Tree Models in Bioinformatics.
PLoS ONE 7, (2012).
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Limiting the maximum depth of the tree is a form of regularization.

Likewise, the values for the other parameters, such as
min_impurity_decrease, can be determined using a validation set.

Another regularization technique for decision trees is known as pruning.

In a bottom-up fashion, nodes are removed if this reduces the
classification error on the validation set.

https:
//scikit-learn.org/dev/auto_examples/tree/plot_cost_complexity_pruning.html
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ID3 (Iterative Dichotomiser 3) ID3, C4.5, C5.0 — by Ross Quinlan.
CART (Classification And Regression Tree) — by Leo Breiman et al.
sklearn.tree.DecisionTreeClassifier

https://scikit-learn.org/stable/modules/tree.html

from s k l e a r n . t r e e import D e c i s i o n T r e e C l a s s i f i e r

# . . .

c l f = t r e e . D e c i s i o n T r e e C l a s s i f i e r ( )
c l f = c l f . f i t (X, y )
t r e e . p l o t _ t r e e ( c l f )

# . . .

c l f . p r e d i c t (X_new)

https://scikit-learn.org/stable/modules/tree.html
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Ensemble methods will be discussed with greater details later.

“Although single decision trees can be excellent classifiers, increased
accuracy often can be achieved by combining the results of a collection of
decision trees.” [3]
A Random Forest is a collection of decision trees.

Strategies to build a collection of trees:

Creating new data sets using a sampling with replacement procedure
(boostrap sampling);
Using a random subset of the features for splitting (typically the square root
of the total number of features);
Taking advantage of the stochastic nature of the procedure to build trees.

Prediction: the most common prediction (majority vote) amongst all the
trees (the information can be used as an indication of the strength of the
prediction).
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Other ensemble learning techniques, such as bagging, pasting, boosting,
and stacking will be discussed later.
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Applications in bioinformatics
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“Synthetic sick and lethal (SSL) genetic interactions between genes A
and B occur when the organism exhibits poor growth (or death) when both
A and B are knocked out but not when either A or B is disabled individually.”
[3]
Determine the exon-intron structure of eukaryotic genes (gene finders). [3]
In the study of gene expression profilling. [3]
Cancer classification [4].
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Decision trees can solve both tasks, classification and regression.

Handle a mixture of data (feature) types, real and categorical.
Interpretation of the resulting model is high
Stability might be an issue, which can be alleviated when coupled with
ensemble learning.
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Hidden Markov Models
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