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Deep learning: fundamentals

In this lecture, we study artificial neural networks (ANN) and specifically the multilayer
architectures known as deep learning. This is the first of three lectures on this topic.
Herein, we focus on the building blocks, namely the units, their connectivity, and the
training algorithms.

General objective :
Discuss the similarities and differences between other machine learning
algorithms and deep learning.



Learning objectives
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Explain in your own words the threshold logic unit
Discuss the role of the activation function
Describe the multilayer perceptron

Reading:
James Zou, Mikael Huss, Abubakar Abid, Pejman Mohammadi, Ali
Torkamani, and Amalio Telenti, A primer on deep learning in genomics, Nat
Genet 51:1, 1218, 2019.
Webb, S. Deep Learning for Biology. Nature 554, 555557 2018.



Reading
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Vanessa Isabell Jurtz, Alexander Rosenberg Johansen, Morten Nielsen, Jose
Juan Almagro Armenteros, Henrik Nielsen, Casper Kaae Sønderby, Ole
Winther, and Søren Kaae Sønderby, An introduction to deep learning on
biological sequence data: examples and solutions, Bioinformatics 33:22,
36853690, 2017.
Mufti Mahmud, Mohammed Shamim Kaiser, Amir Hussain, and Stefano
Vassanelli, Applications of deep learning and reinforcement learning to
biological data, IEEE Transactions on Neural Networks and Learning
Systems 29, 20632079, 2018.



Reading
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Seonwoo Min, Byunghan Lee, and Sungroh Yoon, Deep learning in
bioinformatics, Brief Bioinform 18:5, 851869, 2017.
Gökcen Eraslan, Ziga Avsec, Julien Gagneur, and Fabian J Theis, Deep
learning: new computational modelling techniques for genomics, Nat Rev
Genet 20:7, 389403, 2019.
Binhua Tang, Zixiang Pan, Kang Yin, and Asif Khateeb, Recent advances of
deep learning in bioinformatics and computational biology, Frontiers in
Genetics 10, 214, 2019.
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1. Preamble

2. Application

3. Introduction

4. Implementations

5. Prologue



3Blue1Brown on deep learning (videos)
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But what is a Neural Network?
https://youtu.be/aircAruvnKk
19 minutes

Gradient descent, how neural networks learn
https://youtu.be/IHZwWFHWa-w
21 minutes

What is backpropagation really doing?
https://youtu.be/Ilg3gGewQ5U
14 minutes

Backpropagation calculus
https://youtu.be/tIeHLnjs5U8
10 minutes

https://youtu.be/aircAruvnKk
https://youtu.be/IHZwWFHWa-w
https://youtu.be/Ilg3gGewQ5U
https://youtu.be/tIeHLnjs5U8


playground.tensorflow.org
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https://playground.tensorflow.org
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Source [Zou et al., 2019] Figure 2



What are the applications?

Application 11/46



Transcription factors
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Source: https://youtu.be/MkUgkDLp2iE

https://youtu.be/MkUgkDLp2iE


Essential Cellular Biology: Gene Regulation
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Wasserman, W. & Sandelin, A. Applied bioinformatics for the identification of regulatory elements.
Nat Rev Genet 5, 276287 (2004).



DNA sequence motif discovery
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Patrik Dhaeseleer, How does DNA sequence motif discovery work?, Nat
Biotechnol 24:8, 95961, 2006.



Deep Learning in Genomics Primer
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James Zou, Mikael Huss, Abubakar Abid, Pejman Mohammadi, Ali
Torkamani, and Amalio Telenti, A primer on deep learning in genomics, Nat
Genet 51:1, 1218, 2019.

Google Colab Notebook

https://colab.research.google.com/drive/17E4h5aAOioh5DiTo7MZg4hpL6Z_0FyWr
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Artificial neural networks
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“Although planes were inspired by birds, they don’t have to flap their
wings.” [Géron, 2019]

Likewise, artificial neural networks (ANN) were inspired by the human
brain.

However, ANN do not (necessarily) mimic the brain or explain its
functioning.



Artificial neural networks

Introduction 17/46

“Although planes were inspired by birds, they don’t have to flap their
wings.” [Géron, 2019]
Likewise, artificial neural networks (ANN) were inspired by the human
brain.

However, ANN do not (necessarily) mimic the brain or explain its
functioning.



Artificial neural networks

Introduction 17/46

“Although planes were inspired by birds, they don’t have to flap their
wings.” [Géron, 2019]
Likewise, artificial neural networks (ANN) were inspired by the human
brain.

However, ANN do not (necessarily) mimic the brain or explain its
functioning.



1940-1960, 1980-mid 1990, 2010-
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Source: [Goodfellow et al., 2016] Figure 1.7

McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in
nervous activity. The Bulletin of Mathematical Biophysics 5, 115133 (1943).



What has changed?
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Vast amounts of data are now available
Powerful computers (including fast GPU)
Improved training algorithms



Neuron - threshold logic unit
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Source: [Géron, 2019] Figure 10.4

Common step functions include the heavyside function (0 if the input is
negative and 1 otherwise) or the sign function (-1 if the input is negative, 0
if the input is zero, 1 otherwise).



Simple step functions - heavyside and sign
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1

0
t

f(t)

heavyside(t) =
1, if t ≥ 0
0, if t < 0

1

0

-1
t

f(t)

sign(t) =
1, if t > 0
0, if t = 0
−1, if t = 0



Does this sound familiar?
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One threshold logic unit (TLU) is similar to a logistic regression and
both are solving the same kinds of problems.



Logistic (Logit) Regression
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Despite its name, Logistic Regression is a classification algorithm.

The labels are binary values, yi ∈ {0, 1}.
It is formulated to answer the question, “what is the probability that xi is
a positive example, i.e. yi = 1?”
Just like the Linear Regression, the Logistic Regression computes a
weighted sum of the input features:

θ0 + θ1x (1)
i + θ2x (2)

i + . . . + θDx (D)
i

The image of this function is −∞ to ∞!
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Logistic Regression
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In mathematics, a standard logistic function maps a real value (R) to the
interval (0, 1):

0

0.5

1

−6 −4 −2  0  2  4  6

Source: Wikipedia

σ(t) = 1
1 + e−t

https://en.wikipedia.org/wiki/Logistic_function


Logistic Regression
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The Logistic Regression model, in its vectorized form is:

hθ(xi) = σ(θxi) = 1
1 + e−θxi

Predictions are made as follows:

yi = 0, if hθ(xi) < 0.5
yi = 1, if hθ(xi) ≥ 0.5

The values of θ are learnt using gradient descent.
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Perceptron
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Source: [Géron, 2019] Figure 10.5

A Perceptron consists of a single layer of threshold logic units.

It computes the following function:

hW ,b(X ) = ϕ(WX + b)
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Definitions
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Input neuron: a special type of neuron that simply returns the value of
its input.

Bias neuron: a neuron that always return 1.
Fully connected layer or dense layer: all the neurons are connected to all
the neurons of the previous layer.
X: input matrix (rows are instances, columns are features).
W: weight matrix (# rows corresponds to the number of inputs,
# columns corresponds to the number of neurons in the output layer).
b: bias vector (same size as the number of neurons in the output layer).
Activation function: maps its input domain to a restricted set of values
(heavyside and sign are commonly used with threshold logic unit
perceptrons).
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sklearn.linear_model.Perceptron
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from s k l e a r n . l i n e a r _ m od e l import Percep t ron

# . . .

model = Pe r cep t ron ( )
model . f i t (X, y )

y_pred = model . p r e d i c t (X_new)



Activation functions
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Standard logistic (sigmoid) function,

σ(z) = 1
1 + e−z

Hyperbolic tangent function,

tanh(z) = 2σ(2z) − 1

Rectified Linear Unit function (ReLU),

ReLU(z) = max(0, z)
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Multilayer Perceptron
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Source: [Géron, 2019] Figure 10.7

One input layer

One or more hidden layers
One output layer
With the exception of the output layer, every layer has a bias unit
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Feed-forward network (FFN)
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Source: [Géron, 2019] Figure 10.7

Since information flows from the input to the output, this architecture is
called a feed-forward network (FFN)

Generally, FFN with more than three (3) layers are called deep learning
networks.
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The activation functions are important, since chaining together several
transformations would result into a linear transformation.

With these activation functions the network is calculating a non-linear
function.
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Introduced in 1986 by David Rumelhart, Geoffrey Hinton, and Ronald
Williams.

It is a gradient descent algorithm with an automatic method to compute
the gradients (automatic differentiation or autodiff).
Two passes, forward and backward:

Forward. Computes the output value(s) for a given example.
Backpropagation. Compute the necessary changes for all the weights of the
model.

Repeat the gradient descent until the network converges to a solution.
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Backpropagation (2)
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Going through all the examples for every iteration would be too slow.

Rather, examples are grouped together into mini-batches (32).
Going through all the examples is called an epoch.
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Backpropagation (3)
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Source: [Géron, 2019] Figure 10.8
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Early stopping

L1 and L2 norm
Dropouts
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Frameworks
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Widely popular implementations include,
TensorFlow (https://www.tensorflow.org)

PyTorch (https://pytorch.org)
Keras (https://keras.io/) is a high-level API on the top of
TensorFlow, Theano or Microsoft Cognitive Toolkit (CNTK) — these
are called backends, many more backends are available.

Reading:
Ladislav Rampasek and Anna Goldenberg, TensorFlow: Biologys gateway to
deep learning?, Cell Syst 2:, no. 1, 124, (2016).
Kathleen M Chen, Evan M Cofer, Jian Zhou, and Olga G Troyanskaya,
Selene: a PyTorch-based deep learning library for sequence data, Nat
Methods 16:4, 315318, (2019).
Avsec, Z. et al. Kipoi: accelerating the community exchange and reuse of
predictive models for genomics. bioRxiv 375345 (2018).
doi:10.1101/375345

https://www.tensorflow.org
https://pytorch.org
https://keras.io/
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1. Review the Google Colab Notebook by [Zou et al., 2019]
2. Experiment with https://playground.tensorflow.org

https://colab.research.google.com/drive/17E4h5aAOioh5DiTo7MZg4hpL6Z_0FyWr
https://playground.tensorflow.org
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Summary
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The basic units of artificial neural networks are called threshold logic unit
(TLU).

Each TLU solves a problem similar to that of a logistic regression.
An input layer of passthrough neurons connected to an one output layer
of TLU forms a Perceptron.
In a Perceptron, the units of the output layer are connected to all the input
units, forming a dense layer.
The multilayer perceptron has intermediate layers called hidden layers.
Activation functions are playing a key role, allowing the network to
compute a non-linear function of its input. This is important to model
complex phenomenon.
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