
CSI5180. Machine Learning for
Bioinformatics Applications

Deep learning: fundamentals

by

Marcel Turcotte

Version November 12, 2019

Preamble 2/46

Preamble

Preamble

Preamble 3/46

Deep learning: fundamentals

In this lecture, we study artificial neural networks (ANN) and specifically the multilayer
architectures known as deep learning. This is the first of three lectures on this topic.
Herein, we focus on the building blocks, namely the units, their connectivity, and the
training algorithms.

General objective :
Discuss the similarities and differences between other machine learning
algorithms and deep learning.

Learning objectives

Preamble 4/46

Explain in your own words the threshold logic unit
Discuss the role of the activation function
Describe the multilayer perceptron

Reading:
James Zou, Mikael Huss, Abubakar Abid, Pejman Mohammadi, Ali
Torkamani, and Amalio Telenti, A primer on deep learning in genomics, Nat
Genet 51:1, 1218, 2019.
Webb, S. Deep Learning for Biology. Nature 554, 555557 2018.

Reading

Preamble 5/46

Vanessa Isabell Jurtz, Alexander Rosenberg Johansen, Morten Nielsen, Jose
Juan Almagro Armenteros, Henrik Nielsen, Casper Kaae Sønderby, Ole
Winther, and Søren Kaae Sønderby, An introduction to deep learning on
biological sequence data: examples and solutions, Bioinformatics 33:22,
36853690, 2017.
Mufti Mahmud, Mohammed Shamim Kaiser, Amir Hussain, and Stefano
Vassanelli, Applications of deep learning and reinforcement learning to
biological data, IEEE Transactions on Neural Networks and Learning
Systems 29, 20632079, 2018.

Reading

Preamble 6/46

Seonwoo Min, Byunghan Lee, and Sungroh Yoon, Deep learning in
bioinformatics, Brief Bioinform 18:5, 851869, 2017.
Gökcen Eraslan, Ziga Avsec, Julien Gagneur, and Fabian J Theis, Deep
learning: new computational modelling techniques for genomics, Nat Rev
Genet 20:7, 389403, 2019.
Binhua Tang, Zixiang Pan, Kang Yin, and Asif Khateeb, Recent advances of
deep learning in bioinformatics and computational biology, Frontiers in
Genetics 10, 214, 2019.

Plan

Preamble 7/46

1. Preamble

2. Application

3. Introduction

4. Implementations

5. Prologue

3Blue1Brown on deep learning (videos)

Preamble 8/46

But what is a Neural Network?
https://youtu.be/aircAruvnKk
19 minutes

Gradient descent, how neural networks learn
https://youtu.be/IHZwWFHWa-w
21 minutes

What is backpropagation really doing?
https://youtu.be/Ilg3gGewQ5U
14 minutes

Backpropagation calculus
https://youtu.be/tIeHLnjs5U8
10 minutes

https://youtu.be/aircAruvnKk
https://youtu.be/IHZwWFHWa-w
https://youtu.be/Ilg3gGewQ5U
https://youtu.be/tIeHLnjs5U8

playground.tensorflow.org

Preamble 9/46

https://playground.tensorflow.org

Application 10/46

Application

What are the applications?

Application 11/46

Source [Zou et al., 2019] Figure 2

What are the applications?

Application 11/46

Transcription factors

Application 12/46

Source: https://youtu.be/MkUgkDLp2iE

https://youtu.be/MkUgkDLp2iE

Essential Cellular Biology: Gene Regulation

Application 13/46

Wasserman, W. & Sandelin, A. Applied bioinformatics for the identification of regulatory elements.
Nat Rev Genet 5, 276287 (2004).

DNA sequence motif discovery

Application 14/46

Patrik Dhaeseleer, How does DNA sequence motif discovery work?, Nat
Biotechnol 24:8, 95961, 2006.

Deep Learning in Genomics Primer

Application 15/46

James Zou, Mikael Huss, Abubakar Abid, Pejman Mohammadi, Ali
Torkamani, and Amalio Telenti, A primer on deep learning in genomics, Nat
Genet 51:1, 1218, 2019.

Google Colab Notebook

https://colab.research.google.com/drive/17E4h5aAOioh5DiTo7MZg4hpL6Z_0FyWr

Introduction 16/46

Introduction

Artificial neural networks

Introduction 17/46

“Although planes were inspired by birds, they don’t have to flap their
wings.” [Géron, 2019]

Likewise, artificial neural networks (ANN) were inspired by the human
brain.

However, ANN do not (necessarily) mimic the brain or explain its
functioning.

Artificial neural networks

Introduction 17/46

“Although planes were inspired by birds, they don’t have to flap their
wings.” [Géron, 2019]
Likewise, artificial neural networks (ANN) were inspired by the human
brain.

However, ANN do not (necessarily) mimic the brain or explain its
functioning.

Artificial neural networks

Introduction 17/46

“Although planes were inspired by birds, they don’t have to flap their
wings.” [Géron, 2019]
Likewise, artificial neural networks (ANN) were inspired by the human
brain.

However, ANN do not (necessarily) mimic the brain or explain its
functioning.

1940-1960, 1980-mid 1990, 2010-

Introduction 18/46

Source: [Goodfellow et al., 2016] Figure 1.7

McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in
nervous activity. The Bulletin of Mathematical Biophysics 5, 115133 (1943).

What has changed?

Introduction 19/46

Vast amounts of data are now available
Powerful computers (including fast GPU)
Improved training algorithms

Neuron - threshold logic unit

Introduction 20/46

Source: [Géron, 2019] Figure 10.4

Common step functions include the heavyside function (0 if the input is
negative and 1 otherwise) or the sign function (-1 if the input is negative, 0
if the input is zero, 1 otherwise).

Simple step functions - heavyside and sign

Introduction 21/46

1

0
t

f(t)

heavyside(t) =
1, if t ≥ 0
0, if t < 0

1

0

-1
t

f(t)

sign(t) =
1, if t > 0
0, if t = 0
−1, if t = 0

Does this sound familiar?

Introduction 22/46

One threshold logic unit (TLU) is similar to a logistic regression and
both are solving the same kinds of problems.

Logistic (Logit) Regression

Introduction 23/46

Despite its name, Logistic Regression is a classification algorithm.

The labels are binary values, yi ∈ {0, 1}.
It is formulated to answer the question, “what is the probability that xi is
a positive example, i.e. yi = 1?”
Just like the Linear Regression, the Logistic Regression computes a
weighted sum of the input features:

θ0 + θ1x (1)
i + θ2x (2)

i + . . . + θDx (D)
i

The image of this function is −∞ to ∞!

Logistic (Logit) Regression

Introduction 23/46

Despite its name, Logistic Regression is a classification algorithm.
The labels are binary values, yi ∈ {0, 1}.

It is formulated to answer the question, “what is the probability that xi is
a positive example, i.e. yi = 1?”
Just like the Linear Regression, the Logistic Regression computes a
weighted sum of the input features:

θ0 + θ1x (1)
i + θ2x (2)

i + . . . + θDx (D)
i

The image of this function is −∞ to ∞!

Logistic (Logit) Regression

Introduction 23/46

Despite its name, Logistic Regression is a classification algorithm.
The labels are binary values, yi ∈ {0, 1}.
It is formulated to answer the question, “what is the probability that xi is
a positive example, i.e. yi = 1?”

Just like the Linear Regression, the Logistic Regression computes a
weighted sum of the input features:

θ0 + θ1x (1)
i + θ2x (2)

i + . . . + θDx (D)
i

The image of this function is −∞ to ∞!

Logistic (Logit) Regression

Introduction 23/46

Despite its name, Logistic Regression is a classification algorithm.
The labels are binary values, yi ∈ {0, 1}.
It is formulated to answer the question, “what is the probability that xi is
a positive example, i.e. yi = 1?”
Just like the Linear Regression, the Logistic Regression computes a
weighted sum of the input features:

θ0 + θ1x (1)
i + θ2x (2)

i + . . . + θDx (D)
i

The image of this function is −∞ to ∞!

Logistic (Logit) Regression

Introduction 23/46

Despite its name, Logistic Regression is a classification algorithm.
The labels are binary values, yi ∈ {0, 1}.
It is formulated to answer the question, “what is the probability that xi is
a positive example, i.e. yi = 1?”
Just like the Linear Regression, the Logistic Regression computes a
weighted sum of the input features:

θ0 + θ1x (1)
i + θ2x (2)

i + . . . + θDx (D)
i

The image of this function is −∞ to ∞!

Logistic Regression

Introduction 24/46

In mathematics, a standard logistic function maps a real value (R) to the
interval (0, 1):

0

0.5

1

−6 −4 −2 0 2 4 6

Source: Wikipedia

σ(t) = 1
1 + e−t

https://en.wikipedia.org/wiki/Logistic_function

Logistic Regression

Introduction 25/46

The Logistic Regression model, in its vectorized form is:

hθ(xi) = σ(θxi) = 1
1 + e−θxi

Predictions are made as follows:

yi = 0, if hθ(xi) < 0.5
yi = 1, if hθ(xi) ≥ 0.5

The values of θ are learnt using gradient descent.

Logistic Regression

Introduction 25/46

The Logistic Regression model, in its vectorized form is:

hθ(xi) = σ(θxi) = 1
1 + e−θxi

Predictions are made as follows:

yi = 0, if hθ(xi) < 0.5
yi = 1, if hθ(xi) ≥ 0.5

The values of θ are learnt using gradient descent.

Logistic Regression

Introduction 25/46

The Logistic Regression model, in its vectorized form is:

hθ(xi) = σ(θxi) = 1
1 + e−θxi

Predictions are made as follows:
yi = 0, if hθ(xi) < 0.5

yi = 1, if hθ(xi) ≥ 0.5
The values of θ are learnt using gradient descent.

Logistic Regression

Introduction 25/46

The Logistic Regression model, in its vectorized form is:

hθ(xi) = σ(θxi) = 1
1 + e−θxi

Predictions are made as follows:
yi = 0, if hθ(xi) < 0.5
yi = 1, if hθ(xi) ≥ 0.5

The values of θ are learnt using gradient descent.

Logistic Regression

Introduction 25/46

The Logistic Regression model, in its vectorized form is:

hθ(xi) = σ(θxi) = 1
1 + e−θxi

Predictions are made as follows:
yi = 0, if hθ(xi) < 0.5
yi = 1, if hθ(xi) ≥ 0.5

The values of θ are learnt using gradient descent.

Perceptron

Introduction 26/46

Source: [Géron, 2019] Figure 10.5

A Perceptron consists of a single layer of threshold logic units.

It computes the following function:

hW ,b(X) = ϕ(WX + b)

Perceptron

Introduction 26/46

Source: [Géron, 2019] Figure 10.5

A Perceptron consists of a single layer of threshold logic units.
It computes the following function:

hW ,b(X) = ϕ(WX + b)

Definitions

Introduction 27/46

Input neuron: a special type of neuron that simply returns the value of
its input.

Bias neuron: a neuron that always return 1.
Fully connected layer or dense layer: all the neurons are connected to all
the neurons of the previous layer.
X: input matrix (rows are instances, columns are features).
W: weight matrix (# rows corresponds to the number of inputs,
columns corresponds to the number of neurons in the output layer).
b: bias vector (same size as the number of neurons in the output layer).
Activation function: maps its input domain to a restricted set of values
(heavyside and sign are commonly used with threshold logic unit
perceptrons).

Definitions

Introduction 27/46

Input neuron: a special type of neuron that simply returns the value of
its input.
Bias neuron: a neuron that always return 1.

Fully connected layer or dense layer: all the neurons are connected to all
the neurons of the previous layer.
X: input matrix (rows are instances, columns are features).
W: weight matrix (# rows corresponds to the number of inputs,
columns corresponds to the number of neurons in the output layer).
b: bias vector (same size as the number of neurons in the output layer).
Activation function: maps its input domain to a restricted set of values
(heavyside and sign are commonly used with threshold logic unit
perceptrons).

Definitions

Introduction 27/46

Input neuron: a special type of neuron that simply returns the value of
its input.
Bias neuron: a neuron that always return 1.
Fully connected layer or dense layer: all the neurons are connected to all
the neurons of the previous layer.

X: input matrix (rows are instances, columns are features).
W: weight matrix (# rows corresponds to the number of inputs,
columns corresponds to the number of neurons in the output layer).
b: bias vector (same size as the number of neurons in the output layer).
Activation function: maps its input domain to a restricted set of values
(heavyside and sign are commonly used with threshold logic unit
perceptrons).

Definitions

Introduction 27/46

Input neuron: a special type of neuron that simply returns the value of
its input.
Bias neuron: a neuron that always return 1.
Fully connected layer or dense layer: all the neurons are connected to all
the neurons of the previous layer.
X: input matrix (rows are instances, columns are features).

W: weight matrix (# rows corresponds to the number of inputs,
columns corresponds to the number of neurons in the output layer).
b: bias vector (same size as the number of neurons in the output layer).
Activation function: maps its input domain to a restricted set of values
(heavyside and sign are commonly used with threshold logic unit
perceptrons).

Definitions

Introduction 27/46

Input neuron: a special type of neuron that simply returns the value of
its input.
Bias neuron: a neuron that always return 1.
Fully connected layer or dense layer: all the neurons are connected to all
the neurons of the previous layer.
X: input matrix (rows are instances, columns are features).
W: weight matrix (# rows corresponds to the number of inputs,
columns corresponds to the number of neurons in the output layer).

b: bias vector (same size as the number of neurons in the output layer).
Activation function: maps its input domain to a restricted set of values
(heavyside and sign are commonly used with threshold logic unit
perceptrons).

Definitions

Introduction 27/46

Input neuron: a special type of neuron that simply returns the value of
its input.
Bias neuron: a neuron that always return 1.
Fully connected layer or dense layer: all the neurons are connected to all
the neurons of the previous layer.
X: input matrix (rows are instances, columns are features).
W: weight matrix (# rows corresponds to the number of inputs,
columns corresponds to the number of neurons in the output layer).
b: bias vector (same size as the number of neurons in the output layer).

Activation function: maps its input domain to a restricted set of values
(heavyside and sign are commonly used with threshold logic unit
perceptrons).

Definitions

Introduction 27/46

Input neuron: a special type of neuron that simply returns the value of
its input.
Bias neuron: a neuron that always return 1.
Fully connected layer or dense layer: all the neurons are connected to all
the neurons of the previous layer.
X: input matrix (rows are instances, columns are features).
W: weight matrix (# rows corresponds to the number of inputs,
columns corresponds to the number of neurons in the output layer).
b: bias vector (same size as the number of neurons in the output layer).
Activation function: maps its input domain to a restricted set of values
(heavyside and sign are commonly used with threshold logic unit
perceptrons).

sklearn.linear_model.Perceptron

Introduction 28/46

from s k l e a r n . l i n e a r _ m od e l import Percep t ron

. . .

model = Pe r cep t ron ()
model . f i t (X, y)

y_pred = model . p r e d i c t (X_new)

Activation functions

Introduction 29/46

Standard logistic (sigmoid) function,

σ(z) = 1
1 + e−z

Hyperbolic tangent function,

tanh(z) = 2σ(2z) − 1

Rectified Linear Unit function (ReLU),

ReLU(z) = max(0, z)

Activation functions

Introduction 29/46

Standard logistic (sigmoid) function,

σ(z) = 1
1 + e−z

Hyperbolic tangent function,

tanh(z) = 2σ(2z) − 1

Rectified Linear Unit function (ReLU),

ReLU(z) = max(0, z)

Activation functions

Introduction 29/46

Standard logistic (sigmoid) function,

σ(z) = 1
1 + e−z

Hyperbolic tangent function,

tanh(z) = 2σ(2z) − 1

Rectified Linear Unit function (ReLU),

ReLU(z) = max(0, z)

Multilayer Perceptron

Introduction 30/46

Source: [Géron, 2019] Figure 10.7

One input layer

One or more hidden layers
One output layer
With the exception of the output layer, every layer has a bias unit

Multilayer Perceptron

Introduction 30/46

Source: [Géron, 2019] Figure 10.7

One input layer
One or more hidden layers

One output layer
With the exception of the output layer, every layer has a bias unit

Multilayer Perceptron

Introduction 30/46

Source: [Géron, 2019] Figure 10.7

One input layer
One or more hidden layers
One output layer

With the exception of the output layer, every layer has a bias unit

Multilayer Perceptron

Introduction 30/46

Source: [Géron, 2019] Figure 10.7

One input layer
One or more hidden layers
One output layer
With the exception of the output layer, every layer has a bias unit

Feed-forward network (FFN)

Introduction 31/46

Source: [Géron, 2019] Figure 10.7

Since information flows from the input to the output, this architecture is
called a feed-forward network (FFN)

Generally, FFN with more than three (3) layers are called deep learning
networks.

Feed-forward network (FFN)

Introduction 31/46

Source: [Géron, 2019] Figure 10.7

Since information flows from the input to the output, this architecture is
called a feed-forward network (FFN)
Generally, FFN with more than three (3) layers are called deep learning
networks.

Activation functions

Introduction 32/46

The activation functions are important, since chaining together several
transformations would result into a linear transformation.

With these activation functions the network is calculating a non-linear
function.

Activation functions

Introduction 32/46

The activation functions are important, since chaining together several
transformations would result into a linear transformation.
With these activation functions the network is calculating a non-linear
function.

Backpropagation

Introduction 33/46

Introduced in 1986 by David Rumelhart, Geoffrey Hinton, and Ronald
Williams.

It is a gradient descent algorithm with an automatic method to compute
the gradients (automatic differentiation or autodiff).
Two passes, forward and backward:

Forward. Computes the output value(s) for a given example.
Backpropagation. Compute the necessary changes for all the weights of the
model.

Repeat the gradient descent until the network converges to a solution.

Backpropagation

Introduction 33/46

Introduced in 1986 by David Rumelhart, Geoffrey Hinton, and Ronald
Williams.
It is a gradient descent algorithm with an automatic method to compute
the gradients (automatic differentiation or autodiff).

Two passes, forward and backward:

Forward. Computes the output value(s) for a given example.
Backpropagation. Compute the necessary changes for all the weights of the
model.

Repeat the gradient descent until the network converges to a solution.

Backpropagation

Introduction 33/46

Introduced in 1986 by David Rumelhart, Geoffrey Hinton, and Ronald
Williams.
It is a gradient descent algorithm with an automatic method to compute
the gradients (automatic differentiation or autodiff).
Two passes, forward and backward:

Forward. Computes the output value(s) for a given example.
Backpropagation. Compute the necessary changes for all the weights of the
model.

Repeat the gradient descent until the network converges to a solution.

Backpropagation

Introduction 33/46

Introduced in 1986 by David Rumelhart, Geoffrey Hinton, and Ronald
Williams.
It is a gradient descent algorithm with an automatic method to compute
the gradients (automatic differentiation or autodiff).
Two passes, forward and backward:

Forward. Computes the output value(s) for a given example.

Backpropagation. Compute the necessary changes for all the weights of the
model.

Repeat the gradient descent until the network converges to a solution.

Backpropagation

Introduction 33/46

Introduced in 1986 by David Rumelhart, Geoffrey Hinton, and Ronald
Williams.
It is a gradient descent algorithm with an automatic method to compute
the gradients (automatic differentiation or autodiff).
Two passes, forward and backward:

Forward. Computes the output value(s) for a given example.
Backpropagation. Compute the necessary changes for all the weights of the
model.

Repeat the gradient descent until the network converges to a solution.

Backpropagation

Introduction 33/46

Introduced in 1986 by David Rumelhart, Geoffrey Hinton, and Ronald
Williams.
It is a gradient descent algorithm with an automatic method to compute
the gradients (automatic differentiation or autodiff).
Two passes, forward and backward:

Forward. Computes the output value(s) for a given example.
Backpropagation. Compute the necessary changes for all the weights of the
model.

Repeat the gradient descent until the network converges to a solution.

Backpropagation (2)

Introduction 34/46

Going through all the examples for every iteration would be too slow.

Rather, examples are grouped together into mini-batches (32).
Going through all the examples is called an epoch.

Backpropagation (2)

Introduction 34/46

Going through all the examples for every iteration would be too slow.
Rather, examples are grouped together into mini-batches (32).

Going through all the examples is called an epoch.

Backpropagation (2)

Introduction 34/46

Going through all the examples for every iteration would be too slow.
Rather, examples are grouped together into mini-batches (32).
Going through all the examples is called an epoch.

Backpropagation (3)

Introduction 35/46

Source: [Géron, 2019] Figure 10.8

Regularization

Introduction 36/46

Early stopping

L1 and L2 norm
Dropouts

Regularization

Introduction 36/46

Early stopping
L1 and L2 norm

Dropouts

Regularization

Introduction 36/46

Early stopping
L1 and L2 norm
Dropouts

Implementations 37/46

Implementations

Frameworks

Implementations 38/46

Widely popular implementations include,
TensorFlow (https://www.tensorflow.org)

PyTorch (https://pytorch.org)
Keras (https://keras.io/) is a high-level API on the top of
TensorFlow, Theano or Microsoft Cognitive Toolkit (CNTK) — these
are called backends, many more backends are available.

Reading:
Ladislav Rampasek and Anna Goldenberg, TensorFlow: Biologys gateway to
deep learning?, Cell Syst 2:, no. 1, 124, (2016).
Kathleen M Chen, Evan M Cofer, Jian Zhou, and Olga G Troyanskaya,
Selene: a PyTorch-based deep learning library for sequence data, Nat
Methods 16:4, 315318, (2019).
Avsec, Z. et al. Kipoi: accelerating the community exchange and reuse of
predictive models for genomics. bioRxiv 375345 (2018).
doi:10.1101/375345

https://www.tensorflow.org
https://pytorch.org
https://keras.io/

Frameworks

Implementations 38/46

Widely popular implementations include,
TensorFlow (https://www.tensorflow.org)
PyTorch (https://pytorch.org)

Keras (https://keras.io/) is a high-level API on the top of
TensorFlow, Theano or Microsoft Cognitive Toolkit (CNTK) — these
are called backends, many more backends are available.

Reading:
Ladislav Rampasek and Anna Goldenberg, TensorFlow: Biologys gateway to
deep learning?, Cell Syst 2:, no. 1, 124, (2016).
Kathleen M Chen, Evan M Cofer, Jian Zhou, and Olga G Troyanskaya,
Selene: a PyTorch-based deep learning library for sequence data, Nat
Methods 16:4, 315318, (2019).
Avsec, Z. et al. Kipoi: accelerating the community exchange and reuse of
predictive models for genomics. bioRxiv 375345 (2018).
doi:10.1101/375345

https://www.tensorflow.org
https://pytorch.org
https://keras.io/

Frameworks

Implementations 38/46

Widely popular implementations include,
TensorFlow (https://www.tensorflow.org)
PyTorch (https://pytorch.org)
Keras (https://keras.io/) is a high-level API on the top of
TensorFlow, Theano or Microsoft Cognitive Toolkit (CNTK) — these
are called backends, many more backends are available.

Reading:
Ladislav Rampasek and Anna Goldenberg, TensorFlow: Biologys gateway to
deep learning?, Cell Syst 2:, no. 1, 124, (2016).
Kathleen M Chen, Evan M Cofer, Jian Zhou, and Olga G Troyanskaya,
Selene: a PyTorch-based deep learning library for sequence data, Nat
Methods 16:4, 315318, (2019).
Avsec, Z. et al. Kipoi: accelerating the community exchange and reuse of
predictive models for genomics. bioRxiv 375345 (2018).
doi:10.1101/375345

https://www.tensorflow.org
https://pytorch.org
https://keras.io/

Frameworks

Implementations 38/46

Widely popular implementations include,
TensorFlow (https://www.tensorflow.org)
PyTorch (https://pytorch.org)
Keras (https://keras.io/) is a high-level API on the top of
TensorFlow, Theano or Microsoft Cognitive Toolkit (CNTK) — these
are called backends, many more backends are available.

Reading:
Ladislav Rampasek and Anna Goldenberg, TensorFlow: Biologys gateway to
deep learning?, Cell Syst 2:, no. 1, 124, (2016).
Kathleen M Chen, Evan M Cofer, Jian Zhou, and Olga G Troyanskaya,
Selene: a PyTorch-based deep learning library for sequence data, Nat
Methods 16:4, 315318, (2019).
Avsec, Z. et al. Kipoi: accelerating the community exchange and reuse of
predictive models for genomics. bioRxiv 375345 (2018).
doi:10.1101/375345

https://www.tensorflow.org
https://pytorch.org
https://keras.io/

Frameworks

Implementations 38/46

Widely popular implementations include,
TensorFlow (https://www.tensorflow.org)
PyTorch (https://pytorch.org)
Keras (https://keras.io/) is a high-level API on the top of
TensorFlow, Theano or Microsoft Cognitive Toolkit (CNTK) — these
are called backends, many more backends are available.

Reading:
Ladislav Rampasek and Anna Goldenberg, TensorFlow: Biologys gateway to
deep learning?, Cell Syst 2:, no. 1, 124, (2016).
Kathleen M Chen, Evan M Cofer, Jian Zhou, and Olga G Troyanskaya,
Selene: a PyTorch-based deep learning library for sequence data, Nat
Methods 16:4, 315318, (2019).
Avsec, Z. et al. Kipoi: accelerating the community exchange and reuse of
predictive models for genomics. bioRxiv 375345 (2018).
doi:10.1101/375345

https://www.tensorflow.org
https://pytorch.org
https://keras.io/

Suggested exercises

Implementations 39/46

1. Review the Google Colab Notebook by [Zou et al., 2019]
2. Experiment with https://playground.tensorflow.org

https://colab.research.google.com/drive/17E4h5aAOioh5DiTo7MZg4hpL6Z_0FyWr
https://playground.tensorflow.org

Prologue 40/46

Prologue

Summary

Prologue 41/46

The basic units of artificial neural networks are called threshold logic unit
(TLU).

Each TLU solves a problem similar to that of a logistic regression.
An input layer of passthrough neurons connected to an one output layer
of TLU forms a Perceptron.
In a Perceptron, the units of the output layer are connected to all the input
units, forming a dense layer.
The multilayer perceptron has intermediate layers called hidden layers.
Activation functions are playing a key role, allowing the network to
compute a non-linear function of its input. This is important to model
complex phenomenon.

Summary

Prologue 41/46

The basic units of artificial neural networks are called threshold logic unit
(TLU).
Each TLU solves a problem similar to that of a logistic regression.

An input layer of passthrough neurons connected to an one output layer
of TLU forms a Perceptron.
In a Perceptron, the units of the output layer are connected to all the input
units, forming a dense layer.
The multilayer perceptron has intermediate layers called hidden layers.
Activation functions are playing a key role, allowing the network to
compute a non-linear function of its input. This is important to model
complex phenomenon.

Summary

Prologue 41/46

The basic units of artificial neural networks are called threshold logic unit
(TLU).
Each TLU solves a problem similar to that of a logistic regression.
An input layer of passthrough neurons connected to an one output layer
of TLU forms a Perceptron.

In a Perceptron, the units of the output layer are connected to all the input
units, forming a dense layer.
The multilayer perceptron has intermediate layers called hidden layers.
Activation functions are playing a key role, allowing the network to
compute a non-linear function of its input. This is important to model
complex phenomenon.

Summary

Prologue 41/46

The basic units of artificial neural networks are called threshold logic unit
(TLU).
Each TLU solves a problem similar to that of a logistic regression.
An input layer of passthrough neurons connected to an one output layer
of TLU forms a Perceptron.
In a Perceptron, the units of the output layer are connected to all the input
units, forming a dense layer.

The multilayer perceptron has intermediate layers called hidden layers.
Activation functions are playing a key role, allowing the network to
compute a non-linear function of its input. This is important to model
complex phenomenon.

Summary

Prologue 41/46

The basic units of artificial neural networks are called threshold logic unit
(TLU).
Each TLU solves a problem similar to that of a logistic regression.
An input layer of passthrough neurons connected to an one output layer
of TLU forms a Perceptron.
In a Perceptron, the units of the output layer are connected to all the input
units, forming a dense layer.
The multilayer perceptron has intermediate layers called hidden layers.

Activation functions are playing a key role, allowing the network to
compute a non-linear function of its input. This is important to model
complex phenomenon.

Summary

Prologue 41/46

The basic units of artificial neural networks are called threshold logic unit
(TLU).
Each TLU solves a problem similar to that of a logistic regression.
An input layer of passthrough neurons connected to an one output layer
of TLU forms a Perceptron.
In a Perceptron, the units of the output layer are connected to all the input
units, forming a dense layer.
The multilayer perceptron has intermediate layers called hidden layers.
Activation functions are playing a key role, allowing the network to
compute a non-linear function of its input. This is important to model
complex phenomenon.

Next module

Prologue 42/46

Deep learning (continued)

References

Prologue 43/46

Burkov, A. (2019).
The Hundred-Page Machine Learning Book.
Andriy Burkov.

Chen, K. M., Cofer, E. M., Zhou, J., and Troyanskaya, O. G. (2019).
Selene: a PyTorch-based deep learning library for sequence data.
Nat Methods, 16(4):315–318.

Chollet, F. (2017).
Deep learning with Python.
Manning Publications.

D’haeseleer, P. (2006).
How does DNA sequence motif discovery work?
Nat Biotechnol, 24(8):959–61.

Eraslan, G., Avsec, Ž., Gagneur, J., and Theis, F. J. (2019).
Deep learning: new computational modelling techniques for genomics.
Nat Rev Genet, 20(7):389–403.

References

Prologue 44/46

Géron, A. (2019).
Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow.
O’Reilly Media, 2nd edition.

Goodfellow, I., Bengio, Y., and Courville, A. (2016).
Deep Learning.
MIT Press.
Jurtz, V. I., Johansen, A. R., Nielsen, M., Almagro Armenteros, J. J., Nielsen, H.,
Sønderby, C. K., Winther, O., and Sønderby, S. K. (2017).
An introduction to deep learning on biological sequence data: examples and
solutions.
Bioinformatics, 33(22):3685–3690.

Mahmud, M., Kaiser, M. S., Hussain, A., and Vassanelli, S. (2018).
Applications of deep learning and reinforcement learning to biological data.
IEEE Transactions on Neural Networks and Learning Systems, 29:2063–2079.

Min, S., Lee, B., and Yoon, S. (2017).
Deep learning in bioinformatics.
Brief Bioinform, 18(5):851–869.

References

Prologue 45/46

Rampasek, L. and Goldenberg, A. (2016).
TensorFlow: Biology’s gateway to deep learning?
Cell Syst, 2(1):12–4.

Tang, B., Pan, Z., Yin, K., and Khateeb, A. (2019).
Recent advances of deep learning in bioinformatics and computational biology.
Frontiers in Genetics, 10:214.
Webb, S. (2018).
Deep learning for biology.
Nature, 554(7693):555–557.

Zou, J., Huss, M., Abid, A., Mohammadi, P., Torkamani, A., and Telenti, A.
(2019).
A primer on deep learning in genomics.
Nat Genet, 51(1):12–18.

Prologue 46/46

Marcel Turcotte
Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)
University of Ottawa

Marcel.Turcotte@uOttawa.ca

	Preamble
	Objectives
	Learning objectives
	Plan

	Application
	Introduction
	Implementations
	Prologue

