
CSI5180. Machine Learning for
Bioinformatics Applications

Deep learning — encoding and transfer learning

by

Marcel Turcotte

Version November 12, 2019

Preamble 2/47

Preamble

Preamble

Preamble 3/47

Deep learning — encoding and transfer learning

In this lecture, we further investigate deep learning. We review diverse methods to
encode the data for these artificial neural networks. We present the concept of
embeddings and specifically embeddings for biological sequences. Finally, we discuss
the concept of transfer learning.

General objective :
Explain the various ways to encode data for deep networks

Learning objectives

Preamble 4/47

Explain the concept of embeddings
Describe how to implement transfer learning
Justify the application of transfer learning

Reading:
Ehsaneddin Asgari and Mohammad R K Mofrad, Continuous distributed
representation of biological sequences for deep proteomics and genomics,
PLoS One 10:11, e0141287, 2015.
Wang, S., Li, Z., Yu, Y., Xu, J. Folding Membrane Proteins by Deep
Transfer Learning. Cell Systems 5:3, 202, 2017.

Plan

Preamble 5/47

1. Preamble

2. Summary

3. Keras

4. Preprocessing

5. Transfer learning

6. Prologue

Summary 6/47

Summary

Summary - threshold logic unit

Summary 7/47

Source: [3] Figure 10.4

Model
hw(x) = ϕ(xT w)

Summary - Perceptron

Summary 8/47

Source: [3] Figure 10.5

A Perceptron consists of a single layer of threshold logic units.

It computes the following function:

hW ,b(X) = ϕ(WX + b)

Summary - Perceptron

Summary 8/47

Source: [3] Figure 10.5

A Perceptron consists of a single layer of threshold logic units.
It computes the following function:

hW ,b(X) = ϕ(WX + b)

Summary - Definitions

Summary 9/47

Input neuron: a special type of neuron that simply returns the value of
its input.

Bias neuron: a neuron that always return 1.
Fully connected layer or dense layer: all the neurons are connected to all
the neurons of the previous layer.
X: input matrix (rows are instances, columns are features).
W: weight matrix (# rows corresponds to the number of inputs,
columns corresponds to the number of neurons in the output layer).
b: bias vector (same size as the number of neurons in the output layer).
Activation function: maps its input domain to a restricted set of values
(heavyside and sign are commonly used with threshold logic unit
perceptrons).

Summary - Definitions

Summary 9/47

Input neuron: a special type of neuron that simply returns the value of
its input.
Bias neuron: a neuron that always return 1.

Fully connected layer or dense layer: all the neurons are connected to all
the neurons of the previous layer.
X: input matrix (rows are instances, columns are features).
W: weight matrix (# rows corresponds to the number of inputs,
columns corresponds to the number of neurons in the output layer).
b: bias vector (same size as the number of neurons in the output layer).
Activation function: maps its input domain to a restricted set of values
(heavyside and sign are commonly used with threshold logic unit
perceptrons).

Summary - Definitions

Summary 9/47

Input neuron: a special type of neuron that simply returns the value of
its input.
Bias neuron: a neuron that always return 1.
Fully connected layer or dense layer: all the neurons are connected to all
the neurons of the previous layer.

X: input matrix (rows are instances, columns are features).
W: weight matrix (# rows corresponds to the number of inputs,
columns corresponds to the number of neurons in the output layer).
b: bias vector (same size as the number of neurons in the output layer).
Activation function: maps its input domain to a restricted set of values
(heavyside and sign are commonly used with threshold logic unit
perceptrons).

Summary - Definitions

Summary 9/47

Input neuron: a special type of neuron that simply returns the value of
its input.
Bias neuron: a neuron that always return 1.
Fully connected layer or dense layer: all the neurons are connected to all
the neurons of the previous layer.
X: input matrix (rows are instances, columns are features).

W: weight matrix (# rows corresponds to the number of inputs,
columns corresponds to the number of neurons in the output layer).
b: bias vector (same size as the number of neurons in the output layer).
Activation function: maps its input domain to a restricted set of values
(heavyside and sign are commonly used with threshold logic unit
perceptrons).

Summary - Definitions

Summary 9/47

Input neuron: a special type of neuron that simply returns the value of
its input.
Bias neuron: a neuron that always return 1.
Fully connected layer or dense layer: all the neurons are connected to all
the neurons of the previous layer.
X: input matrix (rows are instances, columns are features).
W: weight matrix (# rows corresponds to the number of inputs,
columns corresponds to the number of neurons in the output layer).

b: bias vector (same size as the number of neurons in the output layer).
Activation function: maps its input domain to a restricted set of values
(heavyside and sign are commonly used with threshold logic unit
perceptrons).

Summary - Definitions

Summary 9/47

Input neuron: a special type of neuron that simply returns the value of
its input.
Bias neuron: a neuron that always return 1.
Fully connected layer or dense layer: all the neurons are connected to all
the neurons of the previous layer.
X: input matrix (rows are instances, columns are features).
W: weight matrix (# rows corresponds to the number of inputs,
columns corresponds to the number of neurons in the output layer).
b: bias vector (same size as the number of neurons in the output layer).

Activation function: maps its input domain to a restricted set of values
(heavyside and sign are commonly used with threshold logic unit
perceptrons).

Summary - Definitions

Summary 9/47

Input neuron: a special type of neuron that simply returns the value of
its input.
Bias neuron: a neuron that always return 1.
Fully connected layer or dense layer: all the neurons are connected to all
the neurons of the previous layer.
X: input matrix (rows are instances, columns are features).
W: weight matrix (# rows corresponds to the number of inputs,
columns corresponds to the number of neurons in the output layer).
b: bias vector (same size as the number of neurons in the output layer).
Activation function: maps its input domain to a restricted set of values
(heavyside and sign are commonly used with threshold logic unit
perceptrons).

Summary - Multilayer Perceptron

Summary 10/47

A two-layer perceptron computes:

y = f2(f1(X))

where

fl(Z) = ϕ(WlZ + bl)

ϕ is an activation function, typically
one of: hyperbolic tangent,
Rectified Linear Unit function,
sigmoid, etc. W is a weight
matrix, X is an input matrix, and b
is a bias vector. In the context of
artificial neural networks, matrices
are called tensors. Source: [3] Figure 10.7

Summary - Multilayer Perceptron

Summary 11/47

A k-layer perceptron computes the following function:

y = fk(. . . f2(f1(X)) . . .)

where
fl(Z) = ϕ(WlZ + bl)

Keras 12/47

Keras

Using Keras

Keras 13/47

https://keras.io
(François Chollet/Google/2015 1st release)

Personally, I find it easier to install and maintain Keras using a package
manager, such as Conda (specifically, I use Anaconda).
Easy to use, yet powerfull and efficient (makes use of GPUs if available)
Two main API: Sequential and Functional

https://keras.io

Using Keras

Keras 13/47

https://keras.io
(François Chollet/Google/2015 1st release)
Personally, I find it easier to install and maintain Keras using a package
manager, such as Conda (specifically, I use Anaconda).

Easy to use, yet powerfull and efficient (makes use of GPUs if available)
Two main API: Sequential and Functional

https://keras.io

Using Keras

Keras 13/47

https://keras.io
(François Chollet/Google/2015 1st release)
Personally, I find it easier to install and maintain Keras using a package
manager, such as Conda (specifically, I use Anaconda).
Easy to use, yet powerfull and efficient (makes use of GPUs if available)

Two main API: Sequential and Functional

https://keras.io

Using Keras

Keras 13/47

https://keras.io
(François Chollet/Google/2015 1st release)
Personally, I find it easier to install and maintain Keras using a package
manager, such as Conda (specifically, I use Anaconda).
Easy to use, yet powerfull and efficient (makes use of GPUs if available)
Two main API: Sequential and Functional

https://keras.io

Sequential API

Keras 14/47

from k e r a s . models import S e q u e n t i a l

model = S e q u e n t i a l ()

from k e r a s . l a y e r s import Dense

model . add (Dense (u n i t s =64, a c t i v a t i o n=’ r e l u ’ , input_dim =100))
model . add (Dense (u n i t s =10, a c t i v a t i o n=’ sof tmax ’))

model . compile (l o s s=’ c a t e g o r i c a l _ c r o s s e n t r o p y ’ ,
o p t i m i z e r=’ sgd ’ ,
m e t r i c s =[’ a ccu racy ’])

model . f i t (x_t ra in , y_t ra in , epochs =5, b a t c h _ s i z e =32)

l o s s_and_met r i c s = model . e v a l u a t e (x_test , y_te s t)

Sequential API

Keras 14/47

from k e r a s . models import S e q u e n t i a l

model = S e q u e n t i a l ()

from k e r a s . l a y e r s import Dense

model . add (Dense (u n i t s =64, a c t i v a t i o n=’ r e l u ’ , input_dim =100))
model . add (Dense (u n i t s =10, a c t i v a t i o n=’ sof tmax ’))

model . compile (l o s s=’ c a t e g o r i c a l _ c r o s s e n t r o p y ’ ,
o p t i m i z e r=’ sgd ’ ,
m e t r i c s =[’ a ccu racy ’])

model . f i t (x_t ra in , y_t ra in , epochs =5, b a t c h _ s i z e =32)

l o s s_and_met r i c s = model . e v a l u a t e (x_test , y_te s t)

Sequential API

Keras 14/47

from k e r a s . models import S e q u e n t i a l

model = S e q u e n t i a l ()

from k e r a s . l a y e r s import Dense

model . add (Dense (u n i t s =64, a c t i v a t i o n=’ r e l u ’ , input_dim =100))
model . add (Dense (u n i t s =10, a c t i v a t i o n=’ sof tmax ’))

model . compile (l o s s=’ c a t e g o r i c a l _ c r o s s e n t r o p y ’ ,
o p t i m i z e r=’ sgd ’ ,
m e t r i c s =[’ a ccu racy ’])

model . f i t (x_t ra in , y_t ra in , epochs =5, b a t c h _ s i z e =32)

l o s s_and_met r i c s = model . e v a l u a t e (x_test , y_te s t)

Sequential API

Keras 14/47

from k e r a s . models import S e q u e n t i a l

model = S e q u e n t i a l ()

from k e r a s . l a y e r s import Dense

model . add (Dense (u n i t s =64, a c t i v a t i o n=’ r e l u ’ , input_dim =100))
model . add (Dense (u n i t s =10, a c t i v a t i o n=’ sof tmax ’))

model . compile (l o s s=’ c a t e g o r i c a l _ c r o s s e n t r o p y ’ ,
o p t i m i z e r=’ sgd ’ ,
m e t r i c s =[’ a ccu racy ’])

model . f i t (x_t ra in , y_t ra in , epochs =5, b a t c h _ s i z e =32)

l o s s_and_met r i c s = model . e v a l u a t e (x_test , y_te s t)

Sequential API

Keras 14/47

from k e r a s . models import S e q u e n t i a l

model = S e q u e n t i a l ()

from k e r a s . l a y e r s import Dense

model . add (Dense (u n i t s =64, a c t i v a t i o n=’ r e l u ’ , input_dim =100))
model . add (Dense (u n i t s =10, a c t i v a t i o n=’ sof tmax ’))

model . compile (l o s s=’ c a t e g o r i c a l _ c r o s s e n t r o p y ’ ,
o p t i m i z e r=’ sgd ’ ,
m e t r i c s =[’ a ccu racy ’])

model . f i t (x_t ra in , y_t ra in , epochs =5, b a t c h _ s i z e =32)

l o s s_and_met r i c s = model . e v a l u a t e (x_test , y_te s t)

Functional API

Keras 15/47

from k e r a s . l a y e r s import Input , Dense
from k e r a s . models import Model

This r e t u r n s a t e n s o r
i n p u t s = Inpu t (shape =(784 ,))

a l a y e r i n s t a n c e i s c a l l a b l e on a t en so r , and r e t u r n s a t e n s o r
output_1 = Dense (64 , a c t i v a t i o n=’ r e l u ’) (i n p u t s)
output_2 = Dense (64 , a c t i v a t i o n=’ r e l u ’) (output_1)
p r e d i c t i o n s = Dense (10 , a c t i v a t i o n=’ sof tmax ’) (output_2)

This c r e a t e s a model t ha t i n c l u d e s
the I npu t l a y e r and t h r e e Dense l a y e r s
model = Model (i n p u t s=inpu t s , ou tpu t s=p r e d i c t i o n s)
model . compile (o p t i m i z e r=’ rmsprop ’ ,

l o s s=’ c a t e g o r i c a l _ c r o s s e n t r o p y ’ ,
m e t r i c s =[’ a ccu racy ’])

model . f i t (data , l a b e l s) # s t a r t s t r a i n i n g

Preprocessing 16/47

Preprocessing

Scaling

Preprocessing 17/47

As discussed at the begining of the term, it is almost always a good idea to
scale the input data.

Custom code
sklearn.preprocessing.StandardScaler
keras.layers.Lambda
Standardization layer

keras.layers.Lambda

Preprocessing 18/47

means = np . mean (X_tra in , a x i s =0, keepdims=True)
s t d s = np . s t d (X_tra in , a x i s =0, keepdims=True)

eps = k e r a s . backend . e p s i l o n ()

model = k e r a s . models . S e q u e n t i a l ([

k e r a s . l a y e r s . Lambda (lambda i n p u t s : (i n p u t s − means) / (s t d s + eps)) ,

[. . .] # o t h e r l a y e r s
])

Source: [3] §11

Standardization layer

Preprocessing 19/47

c l a s s S t a n d a r d i z a t i o n (k e r a s . l a y e r s . Laye r) :
def adapt (s e l f , data_sample) :

s e l f . means_ = np . mean (data_sample , a x i s =0, keepdims=True)
s e l f . s tds_ = np . s t d (data_sample , a x i s =0, keepdims=True)

def c a l l (s e l f , i n p u t s) :
re tu rn (i npu t s − s e l f . means_)/(s e l f . s tds_+k e r a s . backend . e p s i l o n ())

s t d _ l a y e r = S t a n d a r d i z a t i o n ()
s t d _ l a y e r . adapt (data_sample)

model = k e r a s . S e q u e n t i a l ()
model . add (s t d _ l a y e r)
. . . # c r e a t e the r e s t o f the model
model . compile ([. . .])
model . f i t ([. . .])

Source: [3] §11

Standardization layer

Preprocessing 19/47

c l a s s S t a n d a r d i z a t i o n (k e r a s . l a y e r s . Laye r) :
def adapt (s e l f , data_sample) :

s e l f . means_ = np . mean (data_sample , a x i s =0, keepdims=True)
s e l f . s tds_ = np . s t d (data_sample , a x i s =0, keepdims=True)

def c a l l (s e l f , i n p u t s) :
re tu rn (i npu t s − s e l f . means_)/(s e l f . s tds_+k e r a s . backend . e p s i l o n ())

s t d _ l a y e r = S t a n d a r d i z a t i o n ()
s t d _ l a y e r . adapt (data_sample)

model = k e r a s . S e q u e n t i a l ()
model . add (s t d _ l a y e r)
. . . # c r e a t e the r e s t o f the model
model . compile ([. . .])
model . f i t ([. . .])

Source: [3] §11

Standardization layer

Preprocessing 19/47

c l a s s S t a n d a r d i z a t i o n (k e r a s . l a y e r s . Laye r) :
def adapt (s e l f , data_sample) :

s e l f . means_ = np . mean (data_sample , a x i s =0, keepdims=True)
s e l f . s tds_ = np . s t d (data_sample , a x i s =0, keepdims=True)

def c a l l (s e l f , i n p u t s) :
re tu rn (i npu t s − s e l f . means_)/(s e l f . s tds_+k e r a s . backend . e p s i l o n ())

s t d _ l a y e r = S t a n d a r d i z a t i o n ()
s t d _ l a y e r . adapt (data_sample)

model = k e r a s . S e q u e n t i a l ()
model . add (s t d _ l a y e r)
. . . # c r e a t e the r e s t o f the model
model . compile ([. . .])
model . f i t ([. . .])

Source: [3] §11

Standardization layer

Preprocessing 19/47

c l a s s S t a n d a r d i z a t i o n (k e r a s . l a y e r s . Laye r) :
def adapt (s e l f , data_sample) :

s e l f . means_ = np . mean (data_sample , a x i s =0, keepdims=True)
s e l f . s tds_ = np . s t d (data_sample , a x i s =0, keepdims=True)

def c a l l (s e l f , i n p u t s) :
re tu rn (i npu t s − s e l f . means_)/(s e l f . s tds_+k e r a s . backend . e p s i l o n ())

s t d _ l a y e r = S t a n d a r d i z a t i o n ()
s t d _ l a y e r . adapt (data_sample)

model = k e r a s . S e q u e n t i a l ()
model . add (s t d _ l a y e r)
. . . # c r e a t e the r e s t o f the model
model . compile ([. . .])
model . f i t ([. . .])

Source: [3] §11

Categorical data

Preprocessing 20/47

from numpy import a r r a y
import numpy as np

from s k l e a r n . p r e p r o c e s s i n g import Labe lEncode r
from k e r a s . u t i l s import t o _ c a t e g o r i c a l

data = [’T ’ , ’T ’ , ’C ’ , ’T ’ , ’G ’ , ’G ’ , ’C ’ , ’A ’ , ’C ’ , ’T ’ , ’T ’ , ’G ’]

v a l u e s = a r r a y (data)

l a b e l _ e n c o d e r = Labe lEncode r ()

i n t ege r_encoded = l a b e l _ e n c o d e r . f i t _ t r a n s f o r m (v a l u e s)
data_encoded = t o _ c a t e g o r i c a l (i n t ege r_encoded)

Categorical data

Preprocessing 21/47

p r i n t (data_encoded)

[[0. 0. 0. 1.]
[0. 0. 0. 1.]
[0. 1. 0. 0.]
[0. 0. 0. 1.]
[0. 0. 1. 0.]
[0. 0. 1. 0.]
[0. 1. 0. 0.]
[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 0. 1.]
[0. 0. 0. 1.]
[0. 0. 1. 0.]]

Embeddings

Preprocessing 22/47

“An embedding is a trainable dense vector that represents a category.”
[3] §13

With the one hot encoding, we used a sparse encoding with one
dimension per category, e.g. A = [1,0,0,0], to avoid creating false
associations between categories.
With embeddings, the philosophy is the other way around, we want
categories that are similar to have similar vector representations.

The representation is learnt from the data!
Initially, each category is assigned a random vector.
During learning, gradient descent will make the vector representations of
similar categories more similar one to another.

Why?

A better representation can accelerate learning and make more accurate
predictions.
Embeddings can be reused! [A form of transfer learning]

Embeddings

Preprocessing 22/47

“An embedding is a trainable dense vector that represents a category.”
[3] §13
With the one hot encoding, we used a sparse encoding with one
dimension per category, e.g. A = [1,0,0,0], to avoid creating false
associations between categories.

With embeddings, the philosophy is the other way around, we want
categories that are similar to have similar vector representations.

The representation is learnt from the data!
Initially, each category is assigned a random vector.
During learning, gradient descent will make the vector representations of
similar categories more similar one to another.

Why?

A better representation can accelerate learning and make more accurate
predictions.
Embeddings can be reused! [A form of transfer learning]

Embeddings

Preprocessing 22/47

“An embedding is a trainable dense vector that represents a category.”
[3] §13
With the one hot encoding, we used a sparse encoding with one
dimension per category, e.g. A = [1,0,0,0], to avoid creating false
associations between categories.
With embeddings, the philosophy is the other way around, we want
categories that are similar to have similar vector representations.

The representation is learnt from the data!
Initially, each category is assigned a random vector.
During learning, gradient descent will make the vector representations of
similar categories more similar one to another.

Why?

A better representation can accelerate learning and make more accurate
predictions.
Embeddings can be reused! [A form of transfer learning]

Embeddings

Preprocessing 22/47

“An embedding is a trainable dense vector that represents a category.”
[3] §13
With the one hot encoding, we used a sparse encoding with one
dimension per category, e.g. A = [1,0,0,0], to avoid creating false
associations between categories.
With embeddings, the philosophy is the other way around, we want
categories that are similar to have similar vector representations.

The representation is learnt from the data!

Initially, each category is assigned a random vector.
During learning, gradient descent will make the vector representations of
similar categories more similar one to another.

Why?

A better representation can accelerate learning and make more accurate
predictions.
Embeddings can be reused! [A form of transfer learning]

Embeddings

Preprocessing 22/47

“An embedding is a trainable dense vector that represents a category.”
[3] §13
With the one hot encoding, we used a sparse encoding with one
dimension per category, e.g. A = [1,0,0,0], to avoid creating false
associations between categories.
With embeddings, the philosophy is the other way around, we want
categories that are similar to have similar vector representations.

The representation is learnt from the data!
Initially, each category is assigned a random vector.

During learning, gradient descent will make the vector representations of
similar categories more similar one to another.

Why?

A better representation can accelerate learning and make more accurate
predictions.
Embeddings can be reused! [A form of transfer learning]

Embeddings

Preprocessing 22/47

“An embedding is a trainable dense vector that represents a category.”
[3] §13
With the one hot encoding, we used a sparse encoding with one
dimension per category, e.g. A = [1,0,0,0], to avoid creating false
associations between categories.
With embeddings, the philosophy is the other way around, we want
categories that are similar to have similar vector representations.

The representation is learnt from the data!
Initially, each category is assigned a random vector.
During learning, gradient descent will make the vector representations of
similar categories more similar one to another.

Why?

A better representation can accelerate learning and make more accurate
predictions.
Embeddings can be reused! [A form of transfer learning]

Embeddings

Preprocessing 22/47

“An embedding is a trainable dense vector that represents a category.”
[3] §13
With the one hot encoding, we used a sparse encoding with one
dimension per category, e.g. A = [1,0,0,0], to avoid creating false
associations between categories.
With embeddings, the philosophy is the other way around, we want
categories that are similar to have similar vector representations.

The representation is learnt from the data!
Initially, each category is assigned a random vector.
During learning, gradient descent will make the vector representations of
similar categories more similar one to another.

Why?

A better representation can accelerate learning and make more accurate
predictions.
Embeddings can be reused! [A form of transfer learning]

Embeddings

Preprocessing 22/47

“An embedding is a trainable dense vector that represents a category.”
[3] §13
With the one hot encoding, we used a sparse encoding with one
dimension per category, e.g. A = [1,0,0,0], to avoid creating false
associations between categories.
With embeddings, the philosophy is the other way around, we want
categories that are similar to have similar vector representations.

The representation is learnt from the data!
Initially, each category is assigned a random vector.
During learning, gradient descent will make the vector representations of
similar categories more similar one to another.

Why?
A better representation can accelerate learning and make more accurate
predictions.

Embeddings can be reused! [A form of transfer learning]

Embeddings

Preprocessing 22/47

“An embedding is a trainable dense vector that represents a category.”
[3] §13
With the one hot encoding, we used a sparse encoding with one
dimension per category, e.g. A = [1,0,0,0], to avoid creating false
associations between categories.
With embeddings, the philosophy is the other way around, we want
categories that are similar to have similar vector representations.

The representation is learnt from the data!
Initially, each category is assigned a random vector.
During learning, gradient descent will make the vector representations of
similar categories more similar one to another.

Why?
A better representation can accelerate learning and make more accurate
predictions.
Embeddings can be reused! [A form of transfer learning]

Word embbedings

Preprocessing 23/47

Source: [3] Figure 13.5

“Man is to King as Woman is to Queen”

2013

Preprocessing 24/47

Distributed Representations of Words and Phrases and their
Compositionality
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean
https://arxiv.org/abs/1310.4546

“Somewhat surprisingly, many of these patterns can be represented as
linear translations.”
“For example, the result of a vector calculation vec(“Madrid”) -
vec(“Spain”) + vec(“France”) is closer to vec(“Paris”) than to any other
word vector.”

https://arxiv.org/abs/1310.4546

Hypothetical example

Preprocessing 25/47

Imagine that a (coding) DNA sequence is divided into 3-letter words.

There would be 64 such words (64 categories).
Initially, each category is assigned a random vector.
During learning, 3-letter words corresponding to codons encoding the
same amino acid would see their vector representation be made more and
more similar.

Hypothetical example

Preprocessing 25/47

Imagine that a (coding) DNA sequence is divided into 3-letter words.
There would be 64 such words (64 categories).

Initially, each category is assigned a random vector.
During learning, 3-letter words corresponding to codons encoding the
same amino acid would see their vector representation be made more and
more similar.

Hypothetical example

Preprocessing 25/47

Imagine that a (coding) DNA sequence is divided into 3-letter words.
There would be 64 such words (64 categories).
Initially, each category is assigned a random vector.

During learning, 3-letter words corresponding to codons encoding the
same amino acid would see their vector representation be made more and
more similar.

Hypothetical example

Preprocessing 25/47

Imagine that a (coding) DNA sequence is divided into 3-letter words.
There would be 64 such words (64 categories).
Initially, each category is assigned a random vector.
During learning, 3-letter words corresponding to codons encoding the
same amino acid would see their vector representation be made more and
more similar.

Embeddings in bioinformatics

Preprocessing 26/47

Bepler, T. & Berger, B. Learning protein sequence embeddings using
information from structure. arXiv.org cs.LG, (2019). †
Woloszynek, S., Zhao, Z., Chen, J. & Rosen, G. L. 16S rRNA sequence
embeddings: Meaningful numeric feature representations of nucleotide
sequences that are convenient for downstream analyses. PLoS Comput Biol
15, (2019). †

Embeddings in bioinformatics

Preprocessing 27/47

Asgari, E. & Mofrad, M. R. K. Continuous Distributed Representation of
Biological Sequences for Deep Proteomics and Genomics. PLoS ONE 10,
(2015).
Menegaux, R. & Vert, J.-P. Continuous Embeddings of DNA Sequencing
Reads and Application to Metagenomics. J Comput Biol 26,
cmb.2018.0174518 (2019).
Min, X., Zeng, W., Chen, N., Chen, T. & Jiang, R. Chromatin accessibility
prediction via convolutional long short-term memory networks with k-mer
embedding. Bioinformatics 33, I92I101 (2017).
Hamid, M.-N. & Friedberg, I. Identifying Antimicrobial Peptides using Word
Embedding with Deep Recurrent Neural Networks. Bioinformatics 25, 3389
(2018).
Shen, Z., Bao, W. & Huang, D.-S. Recurrent Neural Network for Predicting
Transcription Factor Binding Sites. Sci Rep 8, 15270 (2018).

Transfer learning 28/47

Transfer learning

Transfer learning

Transfer learning 29/47

Transfer learning is taking a sizable portion of a deep network trained
for one application, and slightly modify it before using it in another
application.

Why?

An obvious reason would be to speed up the learning process.
A much more interesting reason (IMHO) is to apply deep learning for
applications where the number of examples is low.

Transfer learning

Transfer learning 29/47

Transfer learning is taking a sizable portion of a deep network trained
for one application, and slightly modify it before using it in another
application.

Why?

An obvious reason would be to speed up the learning process.
A much more interesting reason (IMHO) is to apply deep learning for
applications where the number of examples is low.

Transfer learning

Transfer learning 29/47

Transfer learning is taking a sizable portion of a deep network trained
for one application, and slightly modify it before using it in another
application.

Why?
An obvious reason would be to speed up the learning process.

A much more interesting reason (IMHO) is to apply deep learning for
applications where the number of examples is low.

Transfer learning

Transfer learning 29/47

Transfer learning is taking a sizable portion of a deep network trained
for one application, and slightly modify it before using it in another
application.

Why?
An obvious reason would be to speed up the learning process.
A much more interesting reason (IMHO) is to apply deep learning for
applications where the number of examples is low.

Transfer learning

Transfer learning 30/47

Source: [3] Figure 11.4

Transfer learning in bioinformatics

Transfer learning 31/47

Computational elucidation of membrane protein (MP) structures is
challenging partially due to lack of sufficient solved structures for homology
modeling.

Here, we describe a high-throughput deep transfer learning method
that first predicts MP contacts by learning from non-MPs and then predicts
3D structure models using the predicted contacts as distance restraints.

Wang, S., Li, Z., Yu, Y., Xu, J. Folding Membrane Proteins by Deep
Transfer Learning. Cell Systems 5(3), 202, 2017.

Transfer learning in bioinformatics

Transfer learning 31/47

Computational elucidation of membrane protein (MP) structures is
challenging partially due to lack of sufficient solved structures for homology
modeling. Here, we describe a high-throughput deep transfer learning method
that first predicts MP contacts by learning from non-MPs and then predicts
3D structure models using the predicted contacts as distance restraints.

Wang, S., Li, Z., Yu, Y., Xu, J. Folding Membrane Proteins by Deep
Transfer Learning. Cell Systems 5(3), 202, 2017.

Transfer learning in bioinformatics

Transfer learning 31/47

Computational elucidation of membrane protein (MP) structures is
challenging partially due to lack of sufficient solved structures for homology
modeling. Here, we describe a high-throughput deep transfer learning method
that first predicts MP contacts by learning from non-MPs and then predicts
3D structure models using the predicted contacts as distance restraints.

Wang, S., Li, Z., Yu, Y., Xu, J. Folding Membrane Proteins by Deep
Transfer Learning. Cell Systems 5(3), 202, 2017.

Kipoi

Transfer learning 32/47

Ziga Avsec, Roman Kreuzhuber, Johnny Israeli, Nancy Xu, Jun Cheng,
Avanti Shrikumar, Abhimanyu Banerjee, Daniel S Kim, Thorsten Beier, Lara
Urban, Anshul Kundaje, Oliver Stegle, and Julien Gagneur. The Kipoi
repository accelerates community exchange and reuse of predictive models
for genomics. Nat Biotechnol, 37(6):592600, Jun 2019.

Transfer learning

Transfer learning 33/47

[4] §8.7:
1. You build a deep model on the original big dataset ([non-membrane

proteins]).

2. You compile a much smaller labelled dataset for your second model
([membrane proteins]).

3. You remove the last one or several layers from the first model. Usually,
these are layers responsible for the classification or regression; they usually
follow the embedding layer.

4. You replace the removed layers with new layers adapted for your new
problem.

5. You “freeze” the parameters of the layers remaining from the first
model.

6. You use your smaller labelled dataset and gradient descent to train the
parameters of only the new layers.

Transfer learning

Transfer learning 33/47

[4] §8.7:
1. You build a deep model on the original big dataset ([non-membrane

proteins]).
2. You compile a much smaller labelled dataset for your second model

([membrane proteins]).

3. You remove the last one or several layers from the first model. Usually,
these are layers responsible for the classification or regression; they usually
follow the embedding layer.

4. You replace the removed layers with new layers adapted for your new
problem.

5. You “freeze” the parameters of the layers remaining from the first
model.

6. You use your smaller labelled dataset and gradient descent to train the
parameters of only the new layers.

Transfer learning

Transfer learning 33/47

[4] §8.7:
1. You build a deep model on the original big dataset ([non-membrane

proteins]).
2. You compile a much smaller labelled dataset for your second model

([membrane proteins]).
3. You remove the last one or several layers from the first model. Usually,

these are layers responsible for the classification or regression; they usually
follow the embedding layer.

4. You replace the removed layers with new layers adapted for your new
problem.

5. You “freeze” the parameters of the layers remaining from the first
model.

6. You use your smaller labelled dataset and gradient descent to train the
parameters of only the new layers.

Transfer learning

Transfer learning 33/47

[4] §8.7:
1. You build a deep model on the original big dataset ([non-membrane

proteins]).
2. You compile a much smaller labelled dataset for your second model

([membrane proteins]).
3. You remove the last one or several layers from the first model. Usually,

these are layers responsible for the classification or regression; they usually
follow the embedding layer.

4. You replace the removed layers with new layers adapted for your new
problem.

5. You “freeze” the parameters of the layers remaining from the first
model.

6. You use your smaller labelled dataset and gradient descent to train the
parameters of only the new layers.

Transfer learning

Transfer learning 33/47

[4] §8.7:
1. You build a deep model on the original big dataset ([non-membrane

proteins]).
2. You compile a much smaller labelled dataset for your second model

([membrane proteins]).
3. You remove the last one or several layers from the first model. Usually,

these are layers responsible for the classification or regression; they usually
follow the embedding layer.

4. You replace the removed layers with new layers adapted for your new
problem.

5. You “freeze” the parameters of the layers remaining from the first
model.

6. You use your smaller labelled dataset and gradient descent to train the
parameters of only the new layers.

Transfer learning

Transfer learning 33/47

[4] §8.7:
1. You build a deep model on the original big dataset ([non-membrane

proteins]).
2. You compile a much smaller labelled dataset for your second model

([membrane proteins]).
3. You remove the last one or several layers from the first model. Usually,

these are layers responsible for the classification or regression; they usually
follow the embedding layer.

4. You replace the removed layers with new layers adapted for your new
problem.

5. You “freeze” the parameters of the layers remaining from the first
model.

6. You use your smaller labelled dataset and gradient descent to train the
parameters of only the new layers.

Transfer learning with Keras

Transfer learning 34/47

[3] §11:
model_A = k e r a s . models . load_model ("my_model_A . h5 ")
model_B_on_A = k e r a s . models . S e q u e n t i a l (model_A . l a y e r s [: −1])
model_B_on_A . add (k e r a s . l a y e r s . Dense (1 , a c t i v a t i o n=" s i gmo id "))

Alternatively:
model_A_clone = k e r a s . models . c lone_model (model_A)
model_A_clone . s e t_we i gh t s (model_A . ge t_we ight s ())

Transfer learning with Keras

Transfer learning 34/47

[3] §11:
model_A = k e r a s . models . load_model ("my_model_A . h5 ")
model_B_on_A = k e r a s . models . S e q u e n t i a l (model_A . l a y e r s [: −1])
model_B_on_A . add (k e r a s . l a y e r s . Dense (1 , a c t i v a t i o n=" s i gmo id "))

Alternatively:
model_A_clone = k e r a s . models . c lone_model (model_A)
model_A_clone . s e t_we i gh t s (model_A . ge t_we ight s ())

Transfer learning with Keras

Transfer learning 35/47

[3] §11:
f o r l a y e r i n model_B_on_A . l a y e r s [: − 1] :

l a y e r . t r a i n a b l e = F a l s e

model_B_on_A . compile (l o s s=" b i n a r y _ c r o s s e n t r o p y " , o p t i m i z e r=" sgd " ,
m e t r i c s =[" accu racy "])

h i s t o r y = model_B_on_A . f i t (X_train_B , y_train_B , epochs =4,
v a l i d a t i o n _ d a t a =(X_valid_B , y_val id_B))

Transfer learning with Keras

Transfer learning 36/47

[3] §11:
f o r l a y e r i n model_B_on_A . l a y e r s [: − 1] :

l a y e r . t r a i n a b l e = True

o p t i m i z e r = k e r a s . o p t i m i z e r s .SGD(l r =1e −4) # the d e f a u l t l r i s 1e−2

model_B_on_A . compile (l o s s=" b i n a r y _ c r o s s e n t r o p y " , o p t i m i z e r=o p t i m i z e r ,
m e t r i c s =[" accu racy "])

h i s t o r y = model_B_on_A . f i t (X_train_B , y_train_B , epochs =16,
v a l i d a t i o n _ d a t a =(X_valid_B , y_val id_B))

Remarks

Transfer learning 37/47

Transfer learning is possibly unique to deep learning methods.

When the number of training examples available is too small to justify
using deep learning, there might be a sufficiently similar problem for which a
lot of data is available.

Remarks

Transfer learning 37/47

Transfer learning is possibly unique to deep learning methods.
When the number of training examples available is too small to justify
using deep learning, there might be a sufficiently similar problem for which a
lot of data is available.

Prologue 38/47

Prologue

Summary

Prologue 39/47

Embeddings are representations that are learnt from data.

Transfer learning allows for the application of deep learning to problems for
which the number of training data is low.

Summary

Prologue 39/47

Embeddings are representations that are learnt from data.
Transfer learning allows for the application of deep learning to problems for
which the number of training data is low.

Next module

Prologue 40/47

Deep learning - architectures

References

Prologue 41/47

Ehsaneddin Asgari and Mohammad R K Mofrad.
Continuous distributed representation of biological sequences for deep proteomics
and genomics.
PLoS One, 10(11):e0141287, 2015.

François Chollet.
Deep learning with Python.
Manning Publications, 2017.

Aurélien Géron.
Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow.
O’Reilly Media, 2nd edition, 2019.

Andriy Burkov.
The Hundred-Page Machine Learning Book.
Andriy Burkov, 2019.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
Deep learning.
Nature, 521(7553):436–44, May 2015.

References

Prologue 42/47

Prabina Kumar Meher, Tanmaya Kumar Sahu, Shachi Gahoi, Subhrajit Satpathy,
and Atmakuri Ramakrishna Rao.
Evaluating the performance of sequence encoding schemes and machine learning
methods for splice sites recognition.
Gene, 705:113–126, Jul 2019.
Long Zhang, Guoxian Yu, Dawen Xia, and Jun Wang.
Protein-protein interactions prediction based on ensemble deep neural networks.
Neurocomputing, 324:10–19, 2019.

Ruiqing Zheng, Min Li, Xiang Chen, Fang-Xiang Wu, Yi Pan, and Jianxin Wang.
BiXGBoost: a scalable, flexible boosting-based method for reconstructing gene
regulatory networks.
Bioinformatics, 35(11):1893–1900, Jun 2019.

Maria Colomé-Tatché and Fabian J Theis.
Statistical single cell multi-omics integration.
Current Opinion in Systems Biology, 7:54–59, 2018.

References

Prologue 43/47

Yuming Ma, Yihui Liu, and Jinyong Cheng.
Protein secondary structure prediction based on data partition and semi-random
subspace method.
Sci Rep, 8(1):9856, Jun 2018.

Xuan Zhang, Jun Wang, Jing Li, Wen Chen, and Changning Liu.
Crlncrc: a machine learning-based method for cancer-related long noncoding rna
identification using integrated features.
BMC Med Genomics, 11(Suppl 6):120, Dec 2018.

Xiaoying Wang, Bin Yu, Anjun Ma, Cheng Chen, Bingqiang Liu, and Qin Ma.
Protein–protein interaction sites prediction by ensemble random forests with
synthetic minority oversampling technique.
Bioinformatics, 35(14):2395–2402, 12 2018.

Zhen Cao, Xiaoyong Pan, Yang Yang, Yan Huang, and Hong-Bin Shen.
The lncLocator: a subcellular localization predictor for long non-coding rnas based
on a stacked ensemble classifier.
Bioinformatics, 34(13):2185–2194, 07 2018.

References

Prologue 44/47

Xing Chen, Chi-Chi Zhu, and Jun Yin.
Ensemble of decision tree reveals potential miRNA-disease associations.
PLoS Comput Biol, 15(7):e1007209, Jul 2019.

Jialin Yu, Shaoping Shi, Fang Zhang, Guodong Chen, and Man Cao.
PredGly: predicting lysine glycation sites for homo sapiens based on XGboost
feature optimization.
Bioinformatics, 35(16):2749–2756, Aug 2019.

Hui Peng, Yi Zheng, Zhixun Zhao, Tao Liu, and Jinyan Li.
Recognition of CRISPR/Cas9 off-target sites through ensemble learning of uneven
mismatch distributions.
Bioinformatics, 34(17):i757–i765, 09 2018.

Weijia Su, Xun Gu, and Thomas Peterson.
TIR-Learner, a new ensemble method for TIR transposable element annotation,
provides evidence for abundant new transposable elements in the maize genome.
Mol Plant, 12(3):447–460, 03 2019.

References

Prologue 45/47

Xiangxiang Zeng, Yue Zhong, Wei Lin, and Quan Zou.
Predicting disease-associated circular RNAs using deep forests combined with
positive-unlabeled learning methods.
Brief Bioinform, Oct 2019.
Jaswinder Singh, Jack Hanson, Rhys Heffernan, Kuldip Paliwal, Yuedong Yang,
and Yaoqi Zhou.
Detecting proline and non-proline cis isomers in protein structures from sequences
using deep residual ensemble learning.
J Chem Inf Model, 58(9):2033–2042, 09 2018.

Anand Pratap Singh, Sarthak Mishra, and Suraiya Jabin.
Sequence based prediction of enhancer regions from DNA random walk.
Sci Rep, 8(1):15912, 10 2018.

Stephen Woloszynek, Zhengqiao Zhao, Jian Chen, and Gail L Rosen.
16S rRNA sequence embeddings: Meaningful numeric feature representations of
nucleotide sequences that are convenient for downstream analyses.
PLoS Comput Biol, 15(2):e1006721, 02 2019.

References

Prologue 46/47

John M Giorgi and Gary D Bader.
Transfer learning for biomedical named entity recognition with neural networks.
Bioinformatics, 34(23):4087–4094, Dec 2018.

Tongxin Wang, Travis S Johnson, Wei Shao, Zixiao Lu, Bryan R Helm, Jie Zhang,
and Kun Huang.
BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing
batch correction reveals hidden high-resolution cellular subtypes.
Genome Biol, 20(1):165, 08 2019.

Sheng Wang, Zhen Li, Yizhou Yu, and Jinbo Xu.
Folding membrane proteins by deep transfer learning.
Cell Syst, 5(3):202–211.e3, 09 2017.

Žiga Avsec, Roman Kreuzhuber, Johnny Israeli, Nancy Xu, Jun Cheng, Avanti
Shrikumar, Abhimanyu Banerjee, Daniel S Kim, Thorsten Beier, Lara Urban,
Anshul Kundaje, Oliver Stegle, and Julien Gagneur.
The Kipoi repository accelerates community exchange and reuse of predictive
models for genomics.
Nat Biotechnol, 37(6):592–600, Jun 2019.

Prologue 47/47

Marcel Turcotte
Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)
University of Ottawa

Marcel.Turcotte@uOttawa.ca

	Preamble
	Objectives
	Learning objectives
	Plan

	Summary
	Keras
	Preprocessing
	Transfer learning
	Prologue

