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Deep learning — encoding and transfer learning

In this lecture, we further investigate deep learning. We review diverse methods to
encode the data for these artificial neural networks. We present the concept of
embeddings and specifically embeddings for biological sequences. Finally, we discuss
the concept of transfer learning.

General objective :
Explain the various ways to encode data for deep networks
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Explain the concept of embeddings
Describe how to implement transfer learning
Justify the application of transfer learning

Reading:
Ehsaneddin Asgari and Mohammad R K Mofrad, Continuous distributed
representation of biological sequences for deep proteomics and genomics,
PLoS One 10:11, e0141287, 2015.
Wang, S., Li, Z., Yu, Y., Xu, J. Folding Membrane Proteins by Deep
Transfer Learning. Cell Systems 5:3, 202, 2017.
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Source: [3] Figure 10.4

Model
hw(x) = ϕ(xT w)
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Source: [3] Figure 10.5

A Perceptron consists of a single layer of threshold logic units.

It computes the following function:

hW ,b(X ) = ϕ(WX + b)
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Input neuron: a special type of neuron that simply returns the value of
its input.

Bias neuron: a neuron that always return 1.
Fully connected layer or dense layer: all the neurons are connected to all
the neurons of the previous layer.
X: input matrix (rows are instances, columns are features).
W: weight matrix (# rows corresponds to the number of inputs,
# columns corresponds to the number of neurons in the output layer).
b: bias vector (same size as the number of neurons in the output layer).
Activation function: maps its input domain to a restricted set of values
(heavyside and sign are commonly used with threshold logic unit
perceptrons).
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A two-layer perceptron computes:

y = f2(f1(X ))

where

fl(Z ) = ϕ(WlZ + bl)

ϕ is an activation function, typically
one of: hyperbolic tangent,
Rectified Linear Unit function,
sigmoid, etc. W is a weight
matrix, X is an input matrix, and b
is a bias vector. In the context of
artificial neural networks, matrices
are called tensors. Source: [3] Figure 10.7
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A k-layer perceptron computes the following function:

y = fk(. . . f2(f1(X )) . . .)

where
fl(Z ) = ϕ(WlZ + bl)
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https://keras.io
(François Chollet/Google/2015 1st release)

Personally, I find it easier to install and maintain Keras using a package
manager, such as Conda (specifically, I use Anaconda).
Easy to use, yet powerfull and efficient (makes use of GPUs if available)
Two main API: Sequential and Functional

https://keras.io
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from k e r a s . models import S e q u e n t i a l

model = S e q u e n t i a l ( )

from k e r a s . l a y e r s import Dense

model . add ( Dense ( u n i t s =64, a c t i v a t i o n=’ r e l u ’ , input_dim =100))
model . add ( Dense ( u n i t s =10, a c t i v a t i o n=’ sof tmax ’ ) )

model . compile ( l o s s=’ c a t e g o r i c a l _ c r o s s e n t r o p y ’ ,
o p t i m i z e r=’ sgd ’ ,
m e t r i c s =[ ’ a ccu racy ’ ] )

model . f i t ( x_t ra in , y_t ra in , epochs =5, b a t c h _ s i z e =32)

l o s s_and_met r i c s = model . e v a l u a t e ( x_test , y_te s t )
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from k e r a s . l a y e r s import Input , Dense
from k e r a s . models import Model

# This r e t u r n s a t e n s o r
i n p u t s = Inpu t ( shape =(784 ,))

# a l a y e r i n s t a n c e i s c a l l a b l e on a t en so r , and r e t u r n s a t e n s o r
output_1 = Dense (64 , a c t i v a t i o n=’ r e l u ’ ) ( i n p u t s )
output_2 = Dense (64 , a c t i v a t i o n=’ r e l u ’ ) ( output_1 )
p r e d i c t i o n s = Dense (10 , a c t i v a t i o n=’ sof tmax ’ ) ( output_2 )

# This c r e a t e s a model t ha t i n c l u d e s
# the I npu t l a y e r and t h r e e Dense l a y e r s
model = Model ( i n p u t s=inpu t s , ou tpu t s=p r e d i c t i o n s )
model . compile ( o p t i m i z e r=’ rmsprop ’ ,

l o s s=’ c a t e g o r i c a l _ c r o s s e n t r o p y ’ ,
m e t r i c s =[ ’ a ccu racy ’ ] )

model . f i t ( data , l a b e l s ) # s t a r t s t r a i n i n g
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As discussed at the begining of the term, it is almost always a good idea to
scale the input data.

Custom code
sklearn.preprocessing.StandardScaler
keras.layers.Lambda
Standardization layer
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means = np . mean ( X_tra in , a x i s =0, keepdims=True )
s t d s = np . s t d ( X_tra in , a x i s =0, keepdims=True )

eps = k e r a s . backend . e p s i l o n ( )

model = k e r a s . models . S e q u e n t i a l ( [

k e r a s . l a y e r s . Lambda ( lambda i n p u t s : ( i n p u t s − means ) / ( s t d s + eps ) ) ,

[ . . . ] # o t h e r l a y e r s
] )

Source: [3] §11
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c l a s s S t a n d a r d i z a t i o n ( k e r a s . l a y e r s . Laye r ) :
def adapt ( s e l f , data_sample ) :

s e l f . means_ = np . mean ( data_sample , a x i s =0, keepdims=True )
s e l f . s tds_ = np . s t d ( data_sample , a x i s =0, keepdims=True )

def c a l l ( s e l f , i n p u t s ) :
re tu rn ( i npu t s − s e l f . means_ )/( s e l f . s tds_+k e r a s . backend . e p s i l o n ( ) )

s t d _ l a y e r = S t a n d a r d i z a t i o n ( )
s t d _ l a y e r . adapt ( data_sample )

model = k e r a s . S e q u e n t i a l ( )
model . add ( s t d _ l a y e r )
. . . # c r e a t e the r e s t o f the model
model . compile ( [ . . . ] )
model . f i t ( [ . . . ] )

Source: [3] §11
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from numpy import a r r a y
import numpy as np

from s k l e a r n . p r e p r o c e s s i n g import Labe lEncode r
from k e r a s . u t i l s import t o _ c a t e g o r i c a l

data = [ ’T ’ , ’T ’ , ’C ’ , ’T ’ , ’G ’ , ’G ’ , ’C ’ , ’A ’ , ’C ’ , ’T ’ , ’T ’ , ’G ’ ]

v a l u e s = a r r a y ( data )

l a b e l _ e n c o d e r = Labe lEncode r ( )

i n t ege r_encoded = l a b e l _ e n c o d e r . f i t _ t r a n s f o r m ( v a l u e s )
data_encoded = t o _ c a t e g o r i c a l ( i n t ege r_encoded )
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p r i n t ( data_encoded )

[[0. 0. 0. 1.]
[0. 0. 0. 1.]
[0. 1. 0. 0.]
[0. 0. 0. 1.]
[0. 0. 1. 0.]
[0. 0. 1. 0.]
[0. 1. 0. 0.]
[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 0. 1.]
[0. 0. 0. 1.]
[0. 0. 1. 0.]]
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“An embedding is a trainable dense vector that represents a category.”
[3] §13

With the one hot encoding, we used a sparse encoding with one
dimension per category, e.g. A = [1,0,0,0], to avoid creating false
associations between categories.
With embeddings, the philosophy is the other way around, we want
categories that are similar to have similar vector representations.

The representation is learnt from the data!
Initially, each category is assigned a random vector.
During learning, gradient descent will make the vector representations of
similar categories more similar one to another.

Why?

A better representation can accelerate learning and make more accurate
predictions.
Embeddings can be reused! [A form of transfer learning]
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Source: [3] Figure 13.5

“Man is to King as Woman is to Queen”



2013
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Distributed Representations of Words and Phrases and their
Compositionality
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean
https://arxiv.org/abs/1310.4546

“Somewhat surprisingly, many of these patterns can be represented as
linear translations.”
“For example, the result of a vector calculation vec(“Madrid”) -
vec(“Spain”) + vec(“France”) is closer to vec(“Paris”) than to any other
word vector.”

https://arxiv.org/abs/1310.4546
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Imagine that a (coding) DNA sequence is divided into 3-letter words.

There would be 64 such words (64 categories).
Initially, each category is assigned a random vector.
During learning, 3-letter words corresponding to codons encoding the
same amino acid would see their vector representation be made more and
more similar.
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Transfer learning is taking a sizable portion of a deep network trained
for one application, and slightly modify it before using it in another
application.

Why?

An obvious reason would be to speed up the learning process.
A much more interesting reason (IMHO) is to apply deep learning for
applications where the number of examples is low.
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Source: [3] Figure 11.4
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Computational elucidation of membrane protein (MP) structures is
challenging partially due to lack of sufficient solved structures for homology
modeling.

Here, we describe a high-throughput deep transfer learning method
that first predicts MP contacts by learning from non-MPs and then predicts
3D structure models using the predicted contacts as distance restraints.

Wang, S., Li, Z., Yu, Y., Xu, J. Folding Membrane Proteins by Deep
Transfer Learning. Cell Systems 5(3), 202, 2017.
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Ziga Avsec, Roman Kreuzhuber, Johnny Israeli, Nancy Xu, Jun Cheng,
Avanti Shrikumar, Abhimanyu Banerjee, Daniel S Kim, Thorsten Beier, Lara
Urban, Anshul Kundaje, Oliver Stegle, and Julien Gagneur. The Kipoi
repository accelerates community exchange and reuse of predictive models
for genomics. Nat Biotechnol, 37(6):592600, Jun 2019.
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[4] §8.7:
1. You build a deep model on the original big dataset ([non-membrane

proteins]).

2. You compile a much smaller labelled dataset for your second model
([membrane proteins]).

3. You remove the last one or several layers from the first model. Usually,
these are layers responsible for the classification or regression; they usually
follow the embedding layer.

4. You replace the removed layers with new layers adapted for your new
problem.

5. You “freeze” the parameters of the layers remaining from the first
model.

6. You use your smaller labelled dataset and gradient descent to train the
parameters of only the new layers.
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[3] §11:
model_A = k e r a s . models . load_model ( "my_model_A . h5 " )
model_B_on_A = k e r a s . models . S e q u e n t i a l ( model_A . l a y e r s [ : −1 ] )
model_B_on_A . add ( k e r a s . l a y e r s . Dense (1 , a c t i v a t i o n=" s i gmo id " ) )

Alternatively:
model_A_clone = k e r a s . models . c lone_model ( model_A )
model_A_clone . s e t_we i gh t s ( model_A . ge t_we ight s ( ) )
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[3] §11:
f o r l a y e r i n model_B_on_A . l a y e r s [ : − 1 ] :

l a y e r . t r a i n a b l e = F a l s e

model_B_on_A . compile ( l o s s=" b i n a r y _ c r o s s e n t r o p y " , o p t i m i z e r=" sgd " ,
m e t r i c s =[" accu racy " ] )

h i s t o r y = model_B_on_A . f i t ( X_train_B , y_train_B , epochs =4,
v a l i d a t i o n _ d a t a =(X_valid_B , y_val id_B ) )



Transfer learning with Keras

Transfer learning 36/47

[3] §11:
f o r l a y e r i n model_B_on_A . l a y e r s [ : − 1 ] :

l a y e r . t r a i n a b l e = True

o p t i m i z e r = k e r a s . o p t i m i z e r s .SGD( l r =1e −4) # the d e f a u l t l r i s 1e−2

model_B_on_A . compile ( l o s s=" b i n a r y _ c r o s s e n t r o p y " , o p t i m i z e r=o p t i m i z e r ,
m e t r i c s =[" accu racy " ] )

h i s t o r y = model_B_on_A . f i t ( X_train_B , y_train_B , epochs =16,
v a l i d a t i o n _ d a t a =(X_valid_B , y_val id_B ) )
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Transfer learning is possibly unique to deep learning methods.

When the number of training examples available is too small to justify
using deep learning, there might be a sufficiently similar problem for which a
lot of data is available.
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Embeddings are representations that are learnt from data.

Transfer learning allows for the application of deep learning to problems for
which the number of training data is low.
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