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Deep learning — practical issues

In this last lecture deep learning, we consider practical issues when using existing tools
and libraries.

General objective :
Discuss the pitfalls, limitations, and practical considerations when using
deep learning algorithms.
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Discuss the pitfalls, limitations, and practical considerations when using
deep learning algorithms.
Explain what is a dropout layer
Discuss further mechanisms to regularize deep networks

Reading:
Christof Angermueller, Tanel Pärnamaa, Leopold Parts, and Oliver Stegle.
Deep learning for computational biology. Mol Syst Biol 12(7):878, 07 2016.
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Source: [1] Box 1
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In a dense layer, all the neurons are connected to all the neurons from the
previous layer.

The number of parameters grows exponentially with each additional layer,
making it nearly impossible to create deep networks.

Local connectivity. In a convolutional layer each neuron is connected to
a small number of neurons from the previous layer. This small rectangular
region is called the receptive field.
Parameter sharing. All the neurons in a given feature map of a
convolutional layer share the same kernel (filter).
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Source: [1] Figure 2B
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Contrary to Dense layers, Conv1D layers preserve the identity of the
monomers (nucleotides or amino acids), which are seen as channels.

Convolutional Neural Networks are able to detect patterns irrespective
of their location in the input.

Pooling makes the network less sensitive to small translations.
In bioinformatics, CNN networks are ideally suited to detect local (sequence)
motifs, independent of their position within the input (sequence). They are
also the most prevalent architecture.
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Recurrent networks (RNN) and Long Short-Term Memory (LSTM)
can process input sequences of varying length.

Literature suggests that RNNs are more difficult to train than other
architectures.
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Hinton and colleagues say that dropout layers are “preventing
co-adaptation”.

During training, each input unit in a dropout layer has probability p of
being ignored (set to 0).

According to [3] §11:

20-30% is a typical value of p convolution networks;
whereas, 40-50% is a typical of p for recurrent networks.

Dropout layers can make the network converging more slowly. However,
the resulting network is expected to make fewer generalization errors.
https://keras.io/layers/core/

model = k e r a s . models . S e q u e n t i a l ( [
. . .
Dropout ( 0 . 5 ) ,
. . .

] )

https://keras.io/layers/core/


Dropout

Regularization 13/31

Hinton and colleagues say that dropout layers are “preventing
co-adaptation”.
During training, each input unit in a dropout layer has probability p of
being ignored (set to 0).

According to [3] §11:

20-30% is a typical value of p convolution networks;
whereas, 40-50% is a typical of p for recurrent networks.

Dropout layers can make the network converging more slowly. However,
the resulting network is expected to make fewer generalization errors.
https://keras.io/layers/core/

model = k e r a s . models . S e q u e n t i a l ( [
. . .
Dropout ( 0 . 5 ) ,
. . .

] )

https://keras.io/layers/core/


Dropout

Regularization 13/31

Hinton and colleagues say that dropout layers are “preventing
co-adaptation”.
During training, each input unit in a dropout layer has probability p of
being ignored (set to 0).

According to [3] §11:

20-30% is a typical value of p convolution networks;
whereas, 40-50% is a typical of p for recurrent networks.

Dropout layers can make the network converging more slowly. However,
the resulting network is expected to make fewer generalization errors.
https://keras.io/layers/core/

model = k e r a s . models . S e q u e n t i a l ( [
. . .
Dropout ( 0 . 5 ) ,
. . .

] )

https://keras.io/layers/core/


Dropout

Regularization 13/31

Hinton and colleagues say that dropout layers are “preventing
co-adaptation”.
During training, each input unit in a dropout layer has probability p of
being ignored (set to 0).

According to [3] §11:
20-30% is a typical value of p convolution networks;

whereas, 40-50% is a typical of p for recurrent networks.
Dropout layers can make the network converging more slowly. However,
the resulting network is expected to make fewer generalization errors.
https://keras.io/layers/core/

model = k e r a s . models . S e q u e n t i a l ( [
. . .
Dropout ( 0 . 5 ) ,
. . .

] )

https://keras.io/layers/core/


Dropout

Regularization 13/31

Hinton and colleagues say that dropout layers are “preventing
co-adaptation”.
During training, each input unit in a dropout layer has probability p of
being ignored (set to 0).

According to [3] §11:
20-30% is a typical value of p convolution networks;
whereas, 40-50% is a typical of p for recurrent networks.

Dropout layers can make the network converging more slowly. However,
the resulting network is expected to make fewer generalization errors.
https://keras.io/layers/core/

model = k e r a s . models . S e q u e n t i a l ( [
. . .
Dropout ( 0 . 5 ) ,
. . .

] )

https://keras.io/layers/core/


Dropout

Regularization 13/31

Hinton and colleagues say that dropout layers are “preventing
co-adaptation”.
During training, each input unit in a dropout layer has probability p of
being ignored (set to 0).

According to [3] §11:
20-30% is a typical value of p convolution networks;
whereas, 40-50% is a typical of p for recurrent networks.

Dropout layers can make the network converging more slowly. However,
the resulting network is expected to make fewer generalization errors.

https://keras.io/layers/core/

model = k e r a s . models . S e q u e n t i a l ( [
. . .
Dropout ( 0 . 5 ) ,
. . .

] )

https://keras.io/layers/core/


Dropout

Regularization 13/31

Hinton and colleagues say that dropout layers are “preventing
co-adaptation”.
During training, each input unit in a dropout layer has probability p of
being ignored (set to 0).

According to [3] §11:
20-30% is a typical value of p convolution networks;
whereas, 40-50% is a typical of p for recurrent networks.

Dropout layers can make the network converging more slowly. However,
the resulting network is expected to make fewer generalization errors.
https://keras.io/layers/core/

model = k e r a s . models . S e q u e n t i a l ( [
. . .
Dropout ( 0 . 5 ) ,
. . .

] )

https://keras.io/layers/core/


Dropout

Regularization 14/31

Source: [1] Figure 5F
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Applying penalties on layer parameters
https://keras.io/regularizers/

# o t h e r impor t d i r e c t i v e s a r e he r e
from k e r a s import r e g u l a r i z e r s

model = S e q u e n t i a l ( )
model . add ( Dense (32 , input_shape =(16 , ) ) )
model . add ( Dense (64 , input_dim =64,

k e r n e l _ r e g u l a r i z e r=r e g u l a r i z e r s . l 2 ( 0 . 0 1 ) ) )

Available penalties
k e r a s . r e g u l a r i z e r s . l 1 ( 0 . )
k e r a s . r e g u l a r i z e r s . l 2 ( 0 . )
k e r a s . r e g u l a r i z e r s . l 1 _ l 2 ( l 1 =0.01 , l 2 =0.01)

https://keras.io/regularizers/
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Source: [1] Figure 5E
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An optimizer should be fast and should ideally guide the solution towards a
“good” local optimum (or better, a global optimum).

Momentum

Momentum methods keep track of the previous gradients and this
information is used to update the weights.

m = βm − η∇θJ(θ)

θ = θ + m

Momentum methods can escape plateau more effectively.
Nesterov Accelerated Gradient, AdaGrad, RMSProp, Adam and
Nadam.
Adam is a good default choice.
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Regression
mean_squared_error (MSE) or mean_absolute_error (MAE)

Classification
Binary classification : binary_crossentropy
Multiclass classification : categorical_crossentropy

https://keras.io/losses/

from k e r a s import l o s s e s

model . compile ( l o s s=l o s s e s . mean_squared_error , o p t i m i z e r=’ sgd ’ )

https://keras.io/losses/
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Regression [3] Table 10.1:
ReLU/softplus (if positive outputs)
logistic/tanh (if bounded outputs)

Classification
Binary classification : logistic
Multiclass classification : softmax

https://keras.io/activations/

model = k e r a s . models . S e q u e n t i a l ( [
. . .
Dense (64 , a c t i v a t i o n=" r e l u " ) ,
. . .

] )

https://keras.io/activations/
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Source: [1] Table 2
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model = k e r a s . models . S e q u e n t i a l ( [
Conv2D (64 , 7 , . . . , i nput_shape =[28 , 28 , 1 ] ) ,
MaxPooling2D ( 2 ) ,
Conv2D (128 , 3 , a c t i v a t i o n=" r e l u " , padd ing=" same " ) ,
Conv2D (128 , 3 , a c t i v a t i o n=" r e l u " , padd ing=" same " ) ,
MaxPooling2D ( 2 ) ,
Conv2D (256 , 3 , a c t i v a t i o n=" r e l u " , padd ing=" same " ) ,
Conv2D (256 , 3 , a c t i v a t i o n=" r e l u " , padd ing=" same " ) ,
MaxPooling2D ( 2 ) ,
F l a t t e n ( ) ,
Dense (128 , a c t i v a t i o n=" r e l u " ) ,
Dropout ( 0 . 5 ) ,
Dense (64 , a c t i v a t i o n=" r e l u " ) ,
Dropout ( 0 . 5 ) ,
Dense (10 , a c t i v a t i o n=" sof tmax " )

] )

[3] §14:
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We obviously barely scratched the surface of deep learning. Here are some important
concepts that we did not consider:

The vanishing and exploding gradient, see BatchNormalization.

Weights initialization.
Data augmentation.
Understanding what the network has learnt:

Shrikumar, A., Greenside, P. & Kundaje, A. Learning Important Features
Through Propagating Activation Differences. arXiv.org cs.CV, (2017).
[DeepLIFT]

Attention layer
Multi-tasks (not multi-class, not multi-labels)
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The see the world as a hierarchy of concepts, effectively bypassing the
need to create features (features engineering).

“Deep neural networks can help circumventing the manual extraction of
features by learning them from data.” [1]

Transfer learning is a possibly unique to deep learning.
Hundreds of papers in bioinformatics alone.
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Deep networks consisting only of dense layers become computationally
intractable as the number of parameters grows exponentially with each
additional layer.

Convolutional layers considerably reduce the number of parameters since
each unit is connected to a limited number of neurons from the previous
layer, its receptive field.
CNN is able to detect patterns in a positon independent manner.
RNN and LSTM handle sequence information, where the input sequences
can be of different lengths. They can detect patterns along the sequence.
Dropout layers are an effective regularization mechanism.
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Concept- and rule-based
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