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Learning Graphs

A graph is a fundamental data structure with a great number of applications, both in
computer science and the life sciences. In this lecture, we consider machine learning
algorithms where graphs are playing a central role.

General objective :
= Discuss the applications of frequent subgraph mining in bioinformatics
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Learning objectives

= Discuss the various search strategies from frequent subgraph mining
= Explain the two main paradigms, single graph vs multiple graphs

Reading:

= Aida Mrzic, Pieter Meysman, Wout Bittremieux, Pieter Moris, Boris Cule,
Bart Goethals, and Kris Laukens. Grasping frequent subgraph mining for
bioinformatics applications. BioData Min 11:20, 2018.

= Peng Zhang and Yuval Itan. Biological network approaches and applications
in rare disease studies. Genes 10: 2019.

= Hiroshi Mamitsuka. Textbook of Machine Learning and Data Mining: with
Bioinformatics Applications. Global Data Science Publishing, 2018.

§ 6, 7 and 8.
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Graph neural networks by Alexander Gaunt

Graph
Neural
Networks

https://youtu.be/cWIleTMklzNg
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Graphs in molecular biology

Gene Regulatory Networks (GRN)
Biological Pathways

Protein-Protein Interactions (PPI)
RNA-RNA Interaction (RRI)

RNA secondary structure (tree, dual graph)

Rl e

Molecular graph (connectivity of molecules)
* PubChem from NIH has 90 million entries
Genome assembly

ol

Ontologies
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Yeast proteome
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H. Jeong, S. P. Mason, A.-L. Barabasi & Z. N. Oltvai. Lethality and centrality in
protein networks Nature 411:4142 (2001)
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Metabolic network
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Molecular graph

O-H present in % inputs > frequent if support <=3

Carbonic Acid

Sulfuric Acid Acetic Acid

Source: [Samatova et al., 2013]
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Biological networks and rare disease

Introduction
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Network Algorithms:

General Purposes:
. Prioritize disease-causing

. Identify disease-associated

. Capture therapeutic

Topology

Graph Theory
Information Theory
Random Walk

Node Prioritization
Subnetwork Identification

Network Enrichment

Network Visualization
Machine Learning

genes

subnetworks

responses

Source: [Zhang and Itan, 2019] Figure 1
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Graph

= Agraph, G =(V,E), consists of a
set of vertices (V) and a set of
edges (E) where each edge
connects two nodes.
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Graph

= Agraph, G =(V,E), consists of a
set of vertices (V) and a set of
edges (E) where each edge
connects two nodes.

= A graph can be labelled or
unlabelled. Both, edges and nodes
can be labelled.

= An edge can be directed or not.

= There can be weights on edges. If
so, the result is a weighted graph.
Otherwise, the graph is
unweighted.
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Graph

= Nodes are biological entities, such
atoms, molecules, or genes.
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Graph

= Nodes are biological entities, such
atoms, molecules, or genes.

= An edge represents an
“association”. For instance, a
chemical bond, an interaction,
or a relationship (e.g. regulates
the activity of).

= Weights can be used describe a
degree of certainty
(e.g. experimental error) or
strength of an association.
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Subgraph

= A graph G; is a subgraph of G if
all the edges and nodes of G; are
subsets of the edges and nodes
of G.
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Subgraph

= A graph G; is a subgraph of G if
all the edges and nodes of G; are

subsets of the edges and nodes
of G.

= A graph G; is an induced
subgraph of G, if the nodes of G;
are a subset of the nodes of G, and
the nodes in G, are connected

if and only if they are connected
in G.
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Subgraph

= A graph G; is a subgraph of G if
all the edges and nodes of G; are

subsets of the edges and nodes
of G.

= A graph G; is an induced
subgraph of G, if the nodes of G;
are a subset of the nodes of G, and
the nodes in G, are connected
if and only if they are connected
in G.

= Herein, we focus on connected
subgraphs where all the nodes are
connected.
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Isomorphic

= Two graphs are isomorphic if there
exists a mapping (bijection)
between the nodes of the two
graphs, such that if two nodes are b
connected in one graph, then
they are connected in the other.

See also: https://www.youtube.com/watch?v=Xq8o-z1DsUA
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Isomorphic

= Two graphs are isomorphic if there
exists a mapping (bijection)
between the nodes of the two
graphs, such that if two nodes are b
connected in one graph, then
they are connected in the other.

= In other words, the graphs can be a .
seen as “equal’”.

See also: https://www.youtube.com/watch?v=Xq8o-z1DsUA
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Adjacency matrix and adjacency list

a Vo Vol Vg
V3
A graph G.
V1 V2 U3
V1 01 0
v, 1 0 1
AG)=vs [0 1 0
Uy 010
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Source: [Mrzic et al., 2018] Figure 3




= Two (2) isomorphic graphs do not necessarily have the same adjacency
matrix or adjacency list!
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= Two (2) isomorphic graphs do not necessarily have the same adjacency
matrix or adjacency list!

= Yikes!
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Canonical labelling

= The canonical labelling of a graph is a representation such that if two
graphs are isomorphic, then their canonical labelling is the same.
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Canonical labelling

= The canonical labelling of a graph is a representation such that if two
graphs are isomorphic, then their canonical labelling is the same.
Here are two such encodings:

Canonical adjacency matrix (CAM)
Depth-first search (DFS) code
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Two paradigms:
= Single graph:
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Two paradigms:

= Single graph:
For these applications, the input consists of a single graph, let’s a
Protein-Protein-Interaction network.
The output is a list of frequently occurring subgraphs.

= Multiple graphs:
For this class of problems, the input is a collection of graphs, for examples
the connectivity of small compounds, all having a similar activity (e.g. HIV
reverse-transcriptase inhibitors).
The output would be one or several sugraphs, each occurring in a large
proportion (good support) of the input graphs.

= The overarching theme is searching for frequently occurring interesting
subgraphs.
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Frequent subgraph mining

= Input: a graph (G) or set of graphs (G).
= Output: subgraphs with good support.

F = {glg is a subgraph of G or G;support(g) > minimum support}

* Where support is a problem specific measure:

= Count is larger than some threshold s.
» Statistical enrichment compared to some background distribution.
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Algorithms
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Frequent subgraph mining (high level)

1. Enumerate candidates

2. Filter the list

3. Count the number of occurrences
4. Repeat

Counting the number of occurrences is computationally demanding!
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Join node- or edge-based enumeration

a b

¢ 5 W N

h
Graph G, / Candidate 1 Graph G, / Candidate 1

&gﬁ\&%@ O;SE\%%

Graph G, Graph G,
Candidate 2 Candidate 2

Source: [Mrzic et al., 2018] Figure 4
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= The candidate enumeration algorithms are joining subgraphs are are
frequent 1.
The a priori principle says that a graph cannot be more frequent than
any of its subgraphs.

1Count is higher than some threshold.
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Search strategies

= Breadth-first search (BFS) strategy
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Search strategies

= Breadth-first search (BFS) strategy
Candidates are enumerated in order of size.
= Where size is either the number of nodes or number of edges.
Cons: large memory usage.
= Depth-first search (DFS) strategy
The algorithm keeps extending a candidate until the resulting subgraph is no
longer frequent.
Cons: pruning is less effective (thus large execution time).
= Use all inducible subgraphs (graphlets) up to a given size.

For instance, there are 30 undirected unlabelled connected inducible
subgraphs of size 2 to 5.
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Strategies
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Strategies

2-node 3-node 4-node graphlets
graphlet graphlets §
Go Gy G,

5-node graphlets
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Source: [Mrzic et al., 2018] Figure 6
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Support (multiple graphs)

RS <t o

Candidate
subgraph G Graph G, Graph G, Graph G,

Graph database D
support(G) =3
frequency(G) = % =1 (100%)

Source: [Mrzic et al., 2018] Figure 7

= When the input consists of multiple graphs, the support generally ignores
the number of times a subgraph occurs in a given graph.

Algorithms 32/42



Support (single graph)

= Counting the number of occurrences in a single graph brings an added level
of complexity.

Algorithms 33/42



Support (single graph)

= Counting the number of occurrences in a single graph brings an added level
of complexity.

» Counting only the non-overlapping occurrences.

Algorithms 33/42



Support (single graph)

= Counting the number of occurrences in a single graph brings an added level
of complexity.

Counting only the non-overlapping occurrences.
Counting all the occurrences, including the overlapping ones.

Algorithms 33/42



Support (single graph)

= Counting the number of occurrences in a single graph brings an added level
of complexity.

= Counting only the non-overlapping occurrences.
= Counting all the occurrences, including the overlapping ones.

= The a priori principle no longer applies as it is possible for larger subgraphs to
occur more frequently than their subgraphs.

" ‘/’8 ¥ Q
0900 9P 090 o000 000
O ° : O 5 ] vs
v vi & o
Candidate Candidate Ve
Graph G
subgraph g, subgraph g, Graph G Graph G Graph G
support(g;) = 1 support(g;) = 2

Source: [Mrzic et al., 2018] Figure 8
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Existing approaches

Single graph
data

No

Enriched

subgraphs Directed

Significant Subgraph Miner

gspan*
MoFa/MOSs

Labeled OR
Directed

MoFa/MOSS

FANMOD
Significant Subgraph Miner

Mfinder
MAVisto

FANMOD
Kavosh

Significant Subgraph Miner

Source: [Mrzic et al., 2018] Figure 9
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Sampling

= In many cases, particularly in the case of a single large graph, an
exhaustive search is not feasible.
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Sampling

= In many cases, particularly in the case of a single large graph, an
exhaustive search is not feasible.
» Sampling approaches are then used.
See: Alex R Gawronski and Marcel Turcotte, RiboFSM: Frequent subgraph

mining for the discovery of RNA structures and interactions, BMC
bioinformatics (2014).
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= There are two paradigms, single graph and multiple graphs.

"

Frequent subgraph mining returns all subgraphs with minimum support.

= Algorithms often proceed from small to large subgraphs, either using
breadth-first-search or depth-first-search.

= Depending on the application, the support can be the count or some
statistical test.

= When the graphs are large, sampling methods are used.
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Resources

= Graph Theory FAQs: 03. Isomorphism Using Adjacency Matrix by
Sarada Herke

» https://youtu.be/UCle3Smvhls

= Graph Theory: 10. Isomorphic and Non-Isomorphic Graphs by
Sarada Herke

= https://www.youtube.com/watch?v=z-GfKbzvtBA&feature=youtu.be
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Next module

= Ensemble Learning
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