ITI 1121. Introduction to Computing Il

Binary search trees: methods

by
Marcel Turcotte

Version March 27, 2020

Preamble

Preamble

Overview

Binary search trees: methods

We discuss the properties of trees: full binary tree, complete trees, maximum depth of a
complete tree of size n. Finally, we implement methods for adding and removing an
element to and from a binary search tree.

General objective:
= This week, you will be able to design and modify computer programs based on the
concept of a binary search tree.

Preamble

Learning objectives

Learning objectives

= Discuss the efficiency of recursive tree processing in Java, especially in relation to
memory consumption.

= Modify the implementation of a binary search tree to add a new method.
Readings:
= Pages 263, 265-268, 288-293 of E. Koffman and P. Wolfgang.

Preamble

Plan

Preamble

=

]

Summary

Definitions

]

add

B

&

remove

Prologue

Summary

= A tree is a hierarchical data structure

* A tree can be implemented using linked nodes

* lterative and recursive processing:
Iterative: A method that follows one and only one path in the tree can easily
be implemented using an iterative method.
Recursive: A method that must traverse more than one subtree for the same
node is usually implemented more easily using a recursive method.

A binary search tree is a binary tree where each node satisfies the following two
properties:

= All the nodes in its left subtree have smaller values than this node’s or its left
subtree is empty;

= All the nodes of its right subtree have larger values than this node’s or its right
subtree is empty.

Implementation of binary research trees

public class BinarySearchTree<E extends Comparable<E>> {

private static class Node<T> {
private T value;
private Node<T> left;
private Node<T> right;

}

private Node<E> root;

Memory diagram

root

Definitions

Definitions

Full binary tree

Full binary tree

OBNOBNORNO

A binary tree is said to be full if all its nodes have exactly two children except for the
leaves.

9

Definitions

Complete tree

Complete tree

A binary tree of depth d is complete if all its nodes at depths less than d — 1 (so in the
interval [0,1...d — 2]) have exactly two children.

= s this tree complete?

* Yes, the depth of the tree is d =3, all the nodes at depths 0 and 1 (< d — 2) have
exactly two children. Nodes at depth 2 have 0, 1 or 2 children. All nodes at depth 3 are
leaves.

Complete tree

= s this tree complete?

No, the depth of the tree is d =3, node 5 at depth 1 (< d — 2) does not have two
children.

Definitions

Maximum depth

Relationship between the depth and the

number of nodes

* A complete binary tree of depth d has from 29 to 291 — 1 nodes;

= The depth of a complete binary tree of size n is |log, n]|.

Relationship between the depth and the
number of nodes

Discussion

= What relationship exists between the efficiency of the methods and the topology of
the tree (complete or not).

= When searching, each comparison eliminates a subtree;
= The maximum number of nodes visited depends on the depth of the tree;

= Thus, complete trees are advantageous (since the depth of the tree is |log, n|) *

*In the extreme case where the tree is completely unbalanced, one would have to traverse n — 1 links.
17

n [log, n]
10 3
100 6
1,000 9
10,000 13
100,000 16
1,000,000 19
10,000,000 23
100,000,000 26
1,000,000,000 29
10,000,000,000 33
100,000,000,000 36
1,000,000,000,000 39
10,000,000,000,000 43
100,000,000,000,000 46
1,000,000,000,000,000 49

Prefixes of the International System of Units

Prefix n |log, n|
mega 10° 19
giga 10° 29
tera 102 39
peta 101> 49
exa 1018 59
zetta 10°t 69
yotta 10%* 79

= Consult How much data is generated each day? by Jeff Desjardins in World

Economic Forum on 17 April 2019.

https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/
https://www.weforum.org/agenda/2019/04/how-much-data-is-generated-each-day-cf4bddf29f/

Machine: ==
-

Set-up: =
-

64 cores = Intel(R) Xeon(R) CPU E7-4870 v2 2.30GHz

RAM = 512 Giga-bytes

Operating system = Linux

Average time over 5 runs calling add on a tree containing
1,000,000,000 (10°) elements

5,765 nonoseconds, 5.765 microseconds, 0.005765 milliseconds

> java -Xmx256g TestBST 1000000000

Building the tree takes 3.1348975 hours.

boolean add(E element)

Exercise. Starting from an empty tree, add one by one the following elements: «Liony,
«Fox», «Rat», «Caty, «Pig», «Dogn, «Tiger».

= What conclusions do you draw?

= In order to add an element, you must find the place to insert it.
= Which method is used to find an element?
= It's the methodcontains.

= What are the changes to be made?

public boolean contains(E element) {

boolean found = false;
Node<E> current = root;
while (! found && current != null) {
int test = element.compareTo(current.value);
if (test == 0) {
found = true;
1 else if (test < 0) {
current = current. left;
} else {
current = current.right;
}
}

return found:;

boolean add(E element)

= s there a special case to deal with?

Operations involving a change to the variable root are special cases, as are changes to
the variable head for a linked list.

if (current == null) {
root = new Node<E>(element);
}

Else.

boolean done = false;
while (! done) {
int test = element.compareTo(current.value);
if (test == 0) {
done = true;
} else if (test < 0) {
if (current.left == null) {
current.left = new Node<E>(element);
done = true;
} else {
current = current. left;
}
} else {
if (current.right == null) {
current.right = new Node<E>(element);
done = true;
} else {
current = current.right;

}

boolean add(E element)

One always replaces a null value with a new node;

The existing structure of the tree is unchanged;

The topology of the tree depends largely on the order in which the elements are
inserted.

boolean remove(E element)

= Removals will inevitably result in structural changes.
= Explore different strategies using the tree on the next page.
Remove each of the 12 nodes, one by one.

boolean remove(E element)

Consider some specific cases:
= Remove the leftmost node.

» How many sub-cases are there and what are they?
= There are two subcases:

* The node doesn’t have any subtrees;

Node 1 of the subtree 6 is an example;

What do we do? parent.left = null;

The node has a right subtree;

Node 7 of the subtree 9 is an example;

What do we do? parent.left = “right subtree”;

The node cannot have a left subtree, otherwise it is not the leftmost node!

Case 1: removing a leaf

Before:

root

After:

root

Case 1: removing a leaf

After:
Before:
X
root root
E > © o | o 4 > © [] ®
[9] 1] (5]
A 7 -
° T T < L—» o T T I - .
B ==

1
T
1
T
H
(e}

Case 1: Removing a leaf

Before:
After:
root
root L
° > o (o | @ —

Case 2: t.remove(new Integer(34))

Before: After:

Case 3: t.remove(new Integer(34))

Before: After:

Case 4: t.remove(new Integer(6))

Before:

Case 4: t.remove(new Integer(6))

After:

RA

&) (")
@%@ OJO

35

Node<E> remove(E element)

// pre—condition :
if (element == null) {

throw new NullPointerException;
}

if (root == null) {
throw new NoSuchElementException ();
}

Node<E> remove(E element)

Replacing the node at the root of the tree is a special case.

if (element.compareTo(root.value) == 0) {

root = removeTopMost(root);

Node<E> remove(E element)

element is not at the root of the tree

} else {
Node<E> current, parent = root;

if (element.compareTo(root.value) < 0) {

current = root.left;
} else {

current = root.right;
}
//

/)

while (current !'= null) {

int test = element.compareTo(current.value);
if (test == 0) {

if (current =

= parent.left) {
parent. left

removeTopMost(current);
} else {
parent.right = removeTopMost(current);
}
current = null; // stopping criteria
} else {
parent = current;
if (test < 0) {
current = parent.left;
1 else {
current =

parent.right;

}

Node<E> remove TopMost(Node<E>

current)

private Node<E> removeTopMost(Node<E> current) {

Node<E> top;

if (current.left == null) {
top = current.right;

} else if (current.right == null) {
top = current. left;

} else {
current.value = getlLeftMost(current.right);
current.right = removelLeftMost(current.right);
top = current;

}

return top;

E getLeftMost(Node<E> current)

private E getlLeftMost(Node<E> current) {

if (current == null) {
throw new NullPointerException ();
}

if (current.left == null) {
return current.value;
}

return getlLeftMost(current.left);

Node<E> removeleftMost(Node<E>

current)

private Node<E> removelLeftMost(Node<E> current) {

if (current.left == null) {
return current.right;
}

Node<E> top = current, parent = current;
current = current.left;
while (current.left != null) {
parent = current;
current = current.left;
parent.left = current.right;

return top;

Recursive implementation

public void remove(E element) {
// pre—condition :

if (element == null) {
throw new NullPointerException ();
}

root = remove(root, element);

private Node<E> remove(Node<E> current, E element) {

Node<E> result = current;
int test = element.compareTo(current.value);
if (test == 0) {
if (current.left == null) {
result = current.right;
} else if (current.right == null) {
result = current.left;
} else {
current.value = getlLeftMost(current.right);
current.right = remove(current.right, current.value);

} else if (test < 0) {

current.left = remove(current.left , element);
} else {
current.right = remove(current.right, element);

}

return result;

= There is a very wide variety of trees, including the self-balancing trees (AVL,
Red-Black, B).

= A general tree is a tree whose nodes may have more than two children.

= The binary search tree is a binary tree such that all the keys in the left subtree are
smaller than that of the current node and all the keys in the right subtree are larger;

= Such a data structure allows for efficient searches.

Prologue

* The topology of the tree depends on the order in which the elements are added.

* If the tree is complete and contains n elements, you'll have to follow at most
|log, n| links to find the element you are looking for.

References |

ﬁ E. B. Koffman and Wolfgang P. A. T.
Data Structures: Abstraction and Design Using Java.
John Wiley & Sons, 3e edition, 2016.

Marcel Turcotte

Marcel.Turcotte@uOttawa.ca

School of Electrical Engineering and Computer Science (EECS)
University of Ottawa

49 / 49

Marcel.Turcotte@uOttawa.ca

	Preamble
	Overview
	Learning objectives
	Plan

	Summary
	Definitions
	Full binary tree
	Complete tree
	Maximum depth

	add
	remove
	Prologue

