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Question 1 (10 marks)

A.

B.

For a variable of a primitive type, the value is found at the address designated by the identifier.
True or False

A constructor has a return value and the same name as its class.
True or False

. An abstract class contains only abstract methods.

True or False

. Redefining a method in a sub-class will hide the original method declaration in the super-class.

True or False

. The keyword final for the declaration of a method implies that it cannot be redefined in a

sub-class.
True or False

. The value of the following (RPN) postfix expression is 67.

True or False

2035 -5/ 107 * +

. When traversing the following binary search tree in post-order, the nodes are visited in the

following order: 1, 3, 5, 2, 4, 8,9, 7, 6.
True or False

. When implementing the “head+tail” strategy presented in class for processing linked lists, the

recursive method has always at least one more parameter than its public counterpart.
True or False

. A method that throws unchecked exceptions must declare them using the keyword throws.

True or False

. A nested non-static class has access to the methods and attributes of the outer class even if

their visibility is private.
True or False
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Question 2 (10 marks)

A. Which abstract data type is used for the syntactical analysis of an arithmetic expression?

Answer:

B. Which of the following statements best describes the output of the program below.

(a) Displays “c = 0”

(b) Displays “c = Infinity”

(c) Displays “** caught Exception **7 “c = 2"

(d) Displays “** caught ArithmeticException **” “c = 3”

(e) Produces a run-time error and displays a stack trace

(f) Gives a compile-time error: “exception java.lang.ArithmeticException has already been

caught”

Answer:

int a=1, b =0, ¢ = 0;
try {
¢ = a/b;
} catch ( Exception e ) {
System.err.println ( "** caught Exception **" );
c = 2;
} catch ( ArithmeticException ae ) {
System.err.println( "** caught ArithmeticException **" );
c = 3;
}

System.out.println( "c = " + ¢ );

C. For the ArrayList implementation of the interface List.

(a) Insertions at intermediate positions are always fast.

(b)

(c)
)

(d) Reading the value of an intermediate position is always fast.

Adding an element at the first position is always fast.

Removing an element is always fast.

Answer:
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D. For the LinkedList implementation of the interface List, adding an element at the rear of a
singly-linked list can be made faster by:

(a) Adding the elements in the reverse order
(b) Adding a new instance variable to designate the last element of the list

¢) Adding a new instance variable to designate the second to the last node of the list

)

(c)

(d) (b) and (c)
)

(e) None of the above

Answer:

E. Consider the implementation of the class CircularQueue below. Given a queue designated by
q and containing the following elements: A, B, C, D, E, F, G, where A is the front element of
the queue, following the call, q.magic(4), what will be the content of the queue?

(a) E, F, G

(b) A,B,C, D

(c) E,F,G, A, B,C, D

(d) E,F,G,A,B,C,D, A B,C, D
)

(e) None of the above

Answer:
public class CircularQueue<E> {
private E[] elems;
private int front;
private int rear;
public CircularQueue(int capacity) {
if (capacity < 0) {
throw new IllegalArgumentException ("negative number");
elems = (E[]) new Object[capacity ];
front = —1;
rear = —1;
}
public void magic(int n) {
if (rear != —1 && rear != front) {
while (n > 0) {
E current = elems|[front|;
elems[front]| = null;
front = (front + 1) % elems.length;
rear = (rear + 1) % elems.length;
elems|[rear] = current;
n——;
}
}
}
}




April 2013 ITT 1121 Page 5 of 20

Question 3 (25 marks)

You must implement a software system for managing reference letters for the University of Ottawa.
Candidates applying for the master or the doctorate degree must provide recommendation letters
from former professors or employers. Write the implementation of the classes Person, Student,
Reference and Letter. Make sure to add all the necessary constructors. Each attribute must have
a getter method. Here is a test program to illustrate the use of these classes. In particular, make
sure that your implementation would work for this test.

Person student , referencel , reference2;

student = new Student("Lionel ", "cr7Quottawa.ca", "incognito", "432534", 9.2);
referencel = new Reference("Pepe", "pepeQuottawa.ca", "wrestling" , "IEEE");

reference2 = new Reference("Mourinho", "specialone@uottawa.ca",6"psgmission", "SITE");
Letter letterl = new Letter ("Student is excellent ", 5, 5, 5);

Letter letter2 = new Letter ("A hard worker student, very innovative", 5, 3, 4);

student .add(letterl );
student .add(letter2);

referencel .add(letterl );
reference2 .add(letter2);

for (Letter aLetter : student.getLetters()){
if (aLetter != null) {
System.out.println (aLetter );

¥
}
Executing the above test program will produce the following output.
Comment: Student is excellent; Performance = 5.0; Originality = 5.0;
Potential = 5.0.
Comment: A hard worker student, very innovative; Performance = 5.0; Originality = 3.0;

Potential = 4.0.

For this question, you are allowed to use the predifined class java.util. ArrayList. In particular, it
has a constructor ArrayList(), stores an arbitrarily large number of elements, and implements the
following methods.

public interface List<E> {
// Appends the specified element to the end of this list
public abstract boolean add(E o);
// Returns the element at the specified position in this list.
public abstract E get(int index);
// Replaces the element at the specified position with the specified element
public abstract E set(int index, E element);
// Returns an array containing all of the elements in this list in proper order
public abstract Object[] toArray();
// Returns the number of elements in this list
public abstract int size ();
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A. An object of the class Person has attributes for saving the name of the person, its E-mail
address and password. A Person holds several letters. Make sure to include at least one
constructor, as well as the necessary access methods.
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B. A Student is a Person that also has a student number and an admission average. A student
holds several letters. Make sure to include at least one constructor, as well as the necessary
access methods.
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C. A Reference is a Person that belongs to an organization. A Reference may write several
letters (one per student). Make sure to include at least one constructor, as well as the necessary
access methods.
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D. A recommendation Letter has an attribute to store general comments on the student, as well as
rankings, 0 (weak) to 5 (strong), for academic performance, originality and research potential.
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Question 4 (15 marks)

Reverse engineer the memory diagrams below. Specifically, give the implementation of all the classes,
instance variables, and constructors.

ol args
Employee
D sS‘)ige 0 a;ray of
hawe E— "Falcao" tring references

hours
rate

01 2 3% 45
addressE—\ﬁ«‘ | %|o|o|o|o|
Address
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"King Edward"
e, | ]

street
=
number

Hint: You need a class Employee (with a method main) as well as a class Address.
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Question 5 (20 marks)

The abstract data type Deque — pronounced “deck” — combines features of both a queue and a
stack. In particular, a Deque (“Double-Ended QUEue”) allows for

e efficient insertions at the front or rear;
e cfficient deletions at the front or the rear.

Here are the descriptions of the four methods of this class.

void offerFirst( E item ): adds an item at the front of this Deque;

void offerLast( E item ): adds an item at the rear of this Deque;

E pollFirst(): removes and returns the front item of this Deque, returns null if this Deque
was empty;

E pollLast(): removes and returns the rear item of this Deque, returns null if this Deque
was empty.

Below, you will find a partial implementation of the class LinkedDeque that uses linked elements
to store its elements.

e The linked elements are doubly-linked;

e A LinkedDeck has two instance variables, front and rear.

public class LinkedDeque<E> implements Deque<E> {
private static class Node<T> {
private T value;
private Node<T> prev;
private Node<T> next;

private Node(T value, Node<T> prev, Node<T> next) {

this.value = value;
this.prev = prev;
this.next = next;
}
}
LinkedDeque () {
front = null;
rear = null;
}

private Node<E> front ;
private Node<E> rear;

Hint: Draw the memory diagrams. Consider all the special cases.
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public void offerFirst (E e) {

Y // End of offerFirst

public void offerLast (E e) {

Y // End of offerLast
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public E pollFirst () {

Y // End of pollFirst

public E pollLast () {

} // End of pollLast
Y // End of LinkedDeque
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Question 6 (10 marks)

In the class LinkedList below, implement the method LinkedList<E> partition(E elem). This
instance method partitions this list in two parts. This intance retains all the leftmost elements of
this list up to and including the first occurrence of elem. The rest of the elements are returned as a
new list. If elem is not found in the list, then this list remains intact and the returned list is empty.

For instance, let xs designate a list containing the values 1, 2, 3, 4, 3, 5, 6. After the call ys =
xs.partition(3), the list designated by xs contains the elements 1, 2, 3, whereas ys now designates
a list containing the elments 4, 3, 5, 6.

The method must be implemented following the technique presented in class for implementing
recursive methods inside the class, i.e. where a recursive method is made of a public part and a private
recursive part, which we called the helper method. The public method initiates the first call to the
recursive method.

public class LinkedList<E> {
private static class Node<E> {

private E value;
private Node<E> next;

private Node(E value, Node<E> next) {
this.value = value;
this.next = next;

}

private Node<E> head = null;
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public LinkedList<E> partition (E elem) {

} // End of partition

private LinkedList<E> partitionRec( ) {

} // End of partitionRec
Y // End of LinkedList
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Question 7 (10 marks)

Implement the method int countIf(E elem) for the binary search tree presented in class. The
method returns the number of elements in the tree that are greater than elem.

e The elements stored in a binary search tree implement the interface Comparable<E>. Recall
that the method int compareTo(E other) returns a negative integer, zero, or a positive
integer as the instance is less than, equal to, or greater than the specified object.

e A method that is visiting too many nodes will get a maximum of 9 marks.

e Given a binary search tree, t, containing the values 1, 2, 3, 4, 5, 6, the call t.countIf(2)
returns the value 4.

public class BinarySearchTree<E extends Comparable<E> > {
private static class Node<E> {
private E value;

private Node<E> left ;
private Node<E> right ;

private Node( E value ) {
this.value = value;
left = null;
right = null;

}

private Node<E> root = null;
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Y // End of BinarySearchTree
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