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Motivation

COVID-19 pandemic caused by SARS-CoV-2

RNA viruses

Jumps between species are facilitated by high mutation rates [1] and
re-assortment [2]
Wide range of susceptible host species [3, 4, 5, 6, 7]

Controlling the spread

Identification and monitoring of reservoir hosts [8]
Manual testing to identify possible hosts is demanding
Computational techniques could be used to narrow down possible hosts
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Motivation (contd)
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Assessing the Use of Secondary Structure Fingerprints and Deep Learning to Classify
RNA Sequences.
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Related Work

Deep learning has been used to identify:
Viruses from alignment-free metagenomic data [9]
Interactions between viral and host proteins [10]
Hosts for sequences of “influenza A”, “rabies lyssavirus” and “rotavirus A” [11]

Data utilized in prior host identification studies:
Sequences of the viruses themselves [11, 12]
Encoded viral proteins [13]
K-mers [14, 15]
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RNA Secondary Structure

C

U

C

A
G U

G

U

A U

G U

C G

C G

A U

U A

A U

G C

A U

G U

C G

U U

piRNA
30 nt, piR-40447

C
A
U
A G

U

C

A
A
C
G A

A
G

A
A

U
C
U
C
G U C U

G
A
U
C

UUA
GUA

G

A

A
UA

A

G
A G

A

G C

U G

C G

U A

A U

C G

G U

G C

C G

C G

C G

C

G

C

G

U

G

G

C

G

C

A U

C G

C G

C G

U A

G C

C U

G C

C G

C G

C G

G C

A U

C G

U G

U U

G C

G C

U G

G C

G C

U U U

5S Ribosomal RNA
121 nt, CRW V00589

16S Ribosomal RNA
954 nt, CRW J01415

4 33



Observations

Secondary structure is conserved despite high nucleotide mutation rate

Secondary structure often takes part in their biological processes [16, 17]
Examples:

Secondary structure motif to evade host viral recognition mechanism in alphaviruses [18]
Conserved structures “hinting” conserved functions among the coronaviruses [19]
Structural conservation in addition to nucleotide in SARS-CoV-2 vs. viruses in SARS
family [20]

Secondary structure has not been used to predict host species susceptibility
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Proposed Approach

Can features derived from secondary structures improve virus-host prediction

Separately and combined with nucleotide-based features
Deep learning
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Methods Overview

Features:
K-mers
Skip-mers [21]
Secondary structure fingerprints [22]

Deep learning
Dataset and filtering
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K-mers and Skip-mers

K-mers

k = 4, 5, 6
Skip-mers [21]

Unlike k-mers, contain wild-cards at certain positions
Allows to efficiently represent longer sequence patterns
Herein:

Match 1 skip 1 (e.g. A*G*A*C) with length of 7, 9, and 11,
Match 2 skip 1 (e.g. AC*GT*) with length of 6, 7, and 9.
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Secondary Structure Fingerprints

Curated common secondary structure motifs [22]

Overview of the approach:

1. Finding structural motif matches from the sequence
2. Getting free energy values of the matches
3. Rescaling and concatenating the values

RNAMotif [23] was used to find and match secondary structures
Circumvent issues associated with the prediction of RNA secondary structure
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Related Work Using Secondary Structure

G U G A A G U A C G U G A...(108)... ⇒ ⇒ MoSS ⇒ feature vector

Fiannaca, A., Rosa, M. L., Paglia, L. L., Rizzo, R. & Urso, A. nRC: non-coding RNA
Classifier based on structural features. BioData Mining 10, (2017)

.
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RNA Secondary Structures Fingerprints

{ , . . . , , }

G U G A A G U A C G U G A...(108)...

⇒ RNAMotif ⇒ feature vector
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Deep Learning

For each feature set, 3 different network architectures:
2 consecutive relu-activated dense layers + a softmax-activated dense layer
(total depth = 3);
3 consecutive relu-activated dense layers + a softmax-activated dense layer
(total depth = 4); and
4 consecutive relu-activated dense layers + a softmax-activated dense layer
(total depth = 5).

The best performance among the 3 = performance of the feature set.
Width of each layer = number of values in the feature set being used

e.g. 256 for 4-mer

12 33



Deep Learning

10-fold validation [24] was used
Each fold: 90% training, 10% evaluation data
Splitting into folds takes class balance into account

Adam [25] optimizer, sparse categorical crossentropy loss
300 epochs for training
Starting learning rate = 0.001, decay by 50% every 100 epochs

13 33



Dataset

RNA virus sequences and their host species
From NCBI Virus [26] as of September 12, 2020
Filtering – the following were excluded:

Entries with partial sequences only
Entries which sequence length exceeds 40,000
Sequences with unknown nucleotides and/or host species
Hosts with < 100 entries

47,266 entries

14 33



Results

1 feature type at a time: sequence-based > secondary structure based

Best: match-2-skip-1 skip-mer of length 9 at 84.92%± 0.25%
Secondary structure fingerprints:

Combining multiple statistics derived from free energy values of matches generally
improved results
E.g.: min free energy (at 36.75%) < min, avg, max free energy (at 59.42%)
6-mer + length 9 match-2-skip-1 skip-mer + min. free energy gives 85.9%± 0.28%

Best performing overall:

6-mer + length 9 match-2-skip-1 skip-mer at 86.9%± 0.28%
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Limitation and Future Work

Current study only considered top predictions by the deep neural network

Non-top predictions have not been investigated or used to measure performance
Possible future work: Take the other predictions (e.g. top 3 hosts instead of just the top)
into account, they may or may not be susceptible

Limited performance of secondary structure fingerprints

We found that combining different values to form the fingerprints generally improved
results

e.g. min, avg, max free energy vs. min free energy

Subsequent related study [27]: derive and use additional separate scores based on
locality of matches

i.e. whether the secondary structure match is global or local; and if local, which section
Yielded promising results per our finding from this study
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Conclusions

Proposed and tested a deep learning pipeline to predict susceptible hosts from
viral sequence

Unlike previous studies, secondary structure information is used and evaluated, in
addition to sequence-based features

Due to involvement of secondary structures in RNA viruses [18, 19, 20]

Best classification accuracy at 86.89% using 6-mer + match-2-skip-1 skip-mers
of length 9.
Sequence-based features performed better overall in this study.

However, we found that including more score variants to form the fingerprints resulted
in improvements.

Further investigated in a subsequent study [27].
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Thank you!
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Availability

Dataset with the secondary structure fingerprints is available at:
https://www.eecs.uottawa.ca/~turcotte/icbbt2021
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Appendix: All the Results (1/4)

K-mer “Skip-mer” [21] Secondary Structure Fingerprints 10-Fold Cross Validation Averaged Accuracy
Length Match Skip 3-Layers Model 4-Layers Model 5-Layers Model

4-mer - - 62.48%± 0.51% 64.86%± 0.76% 62.09%± 0.77%
5-mer - - 77.29%± 0.22% 75.24%± 0.53% 74.31%± 0.46%
6-mer - - 84.56%± 0.28% 83.55%± 0.48% 83.55%± 0.57%
- 6 2 1 - 61.74%± 0.31% 61.85%± 0.94% 59.45%± 1.0%
- 7 1 1 - 55.89%± 0.34% 54.38%± 0.99% 48.39%± 1.86%
- 7 2 1 - 77.32%± 0.5% 75.76%± 0.8% 71.74%± 1.83%
- 9 1 1 - 75.16%± 0.41% 73.23%± 0.46% 65.53%± 4.57%
- 9 2 1 - 84.92%± 0.25% 84.0%± 0.36% 82.2%± 1.13%
- 11 1 1 - 84.08%± 0.21% 81.78%± 0.98% 81.15%± 0.88%
- - min. free energy 35.91%± 0.42% 36.75%± 0.76% 35.94%± 0.51%
- - min., avg. free energy 50.65%± 0.57% 52.04%± 0.86% 52.6%± 0.65%
- - min., avg., max. free energy 57.37%± 0.52% 59.39%± 0.58% 59.42%± 0.76%
4-mer 6 2 1 - 71.57%± 0.4% 71.69%± 0.41% 71.15%± 0.49%
4-mer 7 1 1 - 70.52%± 0.39% 71.91%± 0.38% 69.63%± 1.01%
5-mer 7 2 1 - 82.14%± 0.29% 82.08%± 0.46% 80.1%± 0.65%
5-mer 9 1 1 - 81.77%± 0.47% 81.13%± 0.39% 80.39%± 0.69%
6-mer 9 2 1 - 86.89%± 0.28% 86.09%± 0.21% 84.68%± 0.83%
6-mer 11 1 1 - 86.7%± 0.38% 86.17%± 0.61% 84.73%± 1.58%
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Appendix: All the Results (2/4)

K-mer “Skip-mer” [21] Secondary Structure Fingerprints 10-Fold Cross Validation Averaged Accuracy
Length Match Skip 3-Layers Model 4-Layers Model 5-Layers Model

4-mer - min. free energy 67.96%± 0.56% 70.97%± 0.54% 72.6%± 0.63%
5-mer - min. free energy 78.93%± 0.24% 80.49%± 0.62% 81.05%± 0.46%
6-mer - min. free energy 84.33%± 0.51% 84.05%± 0.71% 77.7%± 5.36%
4-mer - min., avg. free energy 69.92%± 0.56% 72.28%± 0.52% 75.38%± 0.6%
5-mer - min., avg. free energy 74.93%± 1.66% 81.28%± 0.43% 81.02%± 0.33%
6-mer - min., avg. free energy 83.42%± 0.39% 83.73%± 0.32% 82.23%± 0.32%
4-mer - min., avg., max. free energy 71.14%± 0.49% 74.63%± 0.54% 75.85%± 0.54%
5-mer - min., avg., max. free energy 79.28%± 0.75% 80.74%± 0.52% 81.23%± 0.75%
6-mer - min., avg., max. free energy 83.21%± 0.37% 83.53%± 0.13% 81.87%± 0.44%
- 6 2 1 min. free energy 66.94%± 0.58% 69.98%± 0.65% 71.02%± 0.83%
- 7 1 1 min. free energy 66.83%± 0.22% 69.69%± 0.48% 71.23%± 0.34%
- 7 2 1 min. free energy 78.66%± 0.55% 80.35%± 0.41% 80.72%± 0.59%
- 9 1 1 min. free energy 77.78%± 0.27% 80.05%± 0.29% 79.43%± 1.73%
- 9 2 1 min. free energy 84.58%± 0.34% 79.17%± 3.18% 80.65%± 1.28%
- 11 1 1 min. free energy 83.61%± 0.52% 83.88%± 0.32% 77.77%± 5.17%
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Appendix: All the Results (3/4)

K-mer “Skip-mer” [21] Secondary Structure Fingerprints 10-Fold Cross Validation Averaged Accuracy
Length Match Skip 3-Layers Model 4-Layers Model 5-Layers Model

- 6 2 1 min., avg. free energy 69.62%± 0.49% 71.83%± 0.74% 74.16%± 0.6%
- 7 1 1 min., avg. free energy 68.11%± 0.99% 71.45%± 0.73% 73.93%± 0.59%
- 7 2 1 min., avg. free energy 78.64%± 0.35% 79.75%± 0.85% 80.9%± 0.32%
- 9 1 1 min., avg. free energy 78.48%± 0.59% 79.58%± 0.55% 81.29%± 0.32%
- 9 2 1 min., avg. free energy 83.2%± 0.54% 83.37%± 0.43% 82.45%± 0.57%
- 11 1 1 min., avg. free energy 82.83%± 0.41% 82.75%± 0.44% 82.3%± 0.45%
- 6 2 1 min., avg., max. free energy 70.77%± 0.42% 74.04%± 0.75% 75.38%± 0.36%
- 7 1 1 min., avg., max. free energy 69.28%± 0.75% 74.32%± 0.52% 74.74%± 0.75%
- 7 2 1 min., avg., max. free energy 79.02%± 0.58% 80.43%± 0.52% 81.16%± 0.52%
- 9 1 1 min., avg., max. free energy 78.73%± 0.45% 80.42%± 0.7% 81.3%± 0.33%
- 9 2 1 min., avg., max. free energy 83.93%± 0.2% 83.38%± 0.42% 82.34%± 0.63%
- 11 1 1 min., avg., max. free energy 83.04%± 0.4% 83.0%± 0.18% 82.47%± 0.35%
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Appendix: All the Results (4/4)

K-mer “Skip-mer” [21] Secondary Structure Fingerprints 10-Fold Cross Validation Averaged Accuracy
Length Match Skip 3-Layers Model 4-Layers Model 5-Layers Model

4-mer 6 2 1 min. free energy 74.26%± 0.46% 76.11%± 0.66% 78.78%± 0.3%
4-mer 7 1 1 min. free energy 74.22%± 0.29% 77.44%± 0.83% 78.54%± 0.47%
5-mer 7 2 1 min. free energy 83.74%± 0.39% 83.54%± 0.39% 83.65%± 0.18%
5-mer 9 1 1 min. free energy 82.17%± 0.47% 83.21%± 0.42% 83.07%± 0.45%
6-mer 9 2 1 min. free energy 85.9%± 0.28% 84.37%± 0.71% 83.1%± 0.73%
6-mer 11 1 1 min. free energy 85.86%± 0.35% 84.94%± 0.34% 82.39%± 0.57%
4-mer 6 2 1 min., avg. free energy 75.06%± 0.53% 77.33%± 0.66% 78.89%± 0.48%
4-mer 7 1 1 min., avg. free energy 74.78%± 0.46% 77.11%± 0.39% 78.47%± 0.48%
5-mer 7 2 1 min., avg. free energy 82.52%± 0.38% 82.77%± 0.41% 82.68%± 0.27%
5-mer 9 1 1 min., avg. free energy 81.26%± 0.38% 82.59%± 0.6% 82.37%± 0.41%
6-mer 9 2 1 min., avg. free energy 84.39%± 0.52% 84.2%± 0.3% 82.54%± 1.01%
6-mer 11 1 1 min., avg. free energy 84.33%± 0.53% 84.19%± 0.65% 82.06%± 0.7%
4-mer 6 2 1 min., avg., max. free energy 75.73%± 0.57% 79.56%± 0.2% 79.65%± 0.67%
4-mer 7 1 1 min., avg., max. free energy 75.77%± 0.61% 77.99%± 0.38% 79.23%± 0.44%
5-mer 7 2 1 min., avg., max. free energy 82.54%± 0.39% 82.92%± 0.28% 82.16%± 0.61%
5-mer 9 1 1 min., avg., max. free energy 81.41%± 0.34% 83.13%± 0.17% 81.55%± 1.31%
6-mer 9 2 1 min., avg., max. free energy 84.73%± 0.32% 83.71%± 0.16% 82.33%± 0.64%
6-mer 11 1 1 min., avg., max. free energy 84.61%± 0.26% 83.33%± 0.68% 80.4%± 2.18%
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Appendix: Included Hosts

47 different host species:
Allium sativum, Anas carolinensis, Anas clypeata, Anas platyrhynchos, Anatidae,
Apodemus agrarius, Aves, Bos taurus, Canis lupus familiaris, Capra hircus, Capsicum
annuum, Columbidae, Corvus brachyrhynchos, Cricetulus griseus, Culex, Culex pipiens,
Culex quinquefasciatus, Culicidae, Culiseta melanura, Cyanocitta cristata, Equus caballus,
Felis catus, Gallus gallus, Glycine max, Homo sapiens, Macaca mulatta, Malus domestica,
Meleagris gallopavo, Melogale, Mus musculus, Oryza sativa, Ovis aries, Procyon lotor,
Prunus, Prunus avium, Prunus persica, Pyrus communis, Rattus norvegicus, Rosa sp.,
Solanum lycopersicum, Solanum tuberosum, Sus scrofa, Sus scrofa domesticus, Triticum
aestivum, Vitis vinifera, Vulpes vulpes, and Zea mays
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